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Chapter 1

UNIT I

1.1 Rectangular cartesian coordinates in space

Let a rubber ball be dropped vertically in a room The point on the floor, where the

ball strikes, can be uniquely determined with reference to axes, taken along the length

and breadth of the room. However, when the ball bounces back vertically upward, the

position of the ball in space at any moment cannot be determined with reference to two

axes considered earlier. At any instant, the position of ball can be uniquely determined

if in addition, we also know the height of the ball above the floor. If the height of the

ball above the floor is 2.5 cm and the position of the point where it strikes the ground

is given by (5, 4), one way of describing the position of ball in space is with the help

of these three numbers (5, 4, 2.5). Thus, the position of a point (or an article) in space

can be uniquely determined with the help of three numbers.

In this unit, we will discuss in details about the co-ordinate system and co-ordinates

of a point in space, distance between two points in space, position of a point dividing

the join of two points in a given ratio internally/externally and about the projection

of a point/line in space.

Recall the example of a bouncing ball in a room where one corner of the room was

considered as the origin.

It is not necessary to take a particular corner of the room as the origin. We could

have taken any corner of the room (for the matter any point of the room) as origin of

reference, and relative to that the coordinates of the point change. Thus, the origin
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can be taken arbitarily at any point of the room.

Let us start with an arbitrary point O in space and draw three mutually perpen-

dicular lines X ′OX, Y ′OY and Z ′OZ through O. The point O is called the origin of

the co-ordinate system and the lines X ′OX, Y ′OY and Z ′OZ are called the x-axis, the

y-axis and the z-axis respectively. The positive direction of the axes are indicated by

arrows on thick lines in Fig. 1.0. The plane determined by the X-axis and the Y-axis

is called xy-plane (XOY plane) and similarly, yz-plane (Y OZ-plane) and zx-plane

(ZOX-plane) can be determined. These three planes are called co-ordinate planes.

The three coordinate planes divide the whole space into eight parts called octants.
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Fig. 1.0.

Now, let P be any point in space. Let x, y, z denote the perpendicular distances

from P to the yz, zx and xy coordinate planes repectively. Then the three real num-

bers x, y, z are called the rectangular cartesian coordinates of P and the point

P is represented by the ordered triple (x, y, z). Conversely, any ordered triple of real

numbers (x, y, z) represents a unique point in space. Thus the set of points in space

can be identified with the set R3 = {(x, y, z)|x, y, z ∈ R}.

Note 1.1.1. The space R3 is divided into eight octants by the coordinate planes.
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Note 1.1.2. The points on the x, y plane are of the form (x, y, 0) the point on the yz

plane are of the form (0,y,z) and the points on zx plane are of the form (x, 0, z).

Note 1.1.3. The points on the x-axis are of the form (x, 0, 0) and the points on the

y-axis are of the form (0, y, 0) and the points on the z-axis are of the form (0, 0, z).

1.2 Distance Formula

Theorem 1.2.1. If P (x1, y1, z1) and Q(x2, y2, z2) are two points then

PQ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Proof. Let P (x1, y1, z1) and Q(x2, y2, z2) be two given points.

Draw PM and QN perpendicular to the xoy plane. Then M is (x1, y1, 0) and N is

(x2, y2, 0).

b

b

Z

X

Y

M
N

L
Q

P

Fig 1.1

Therefore MN2 = (x2−x1)
2+(y2−y1)

2 Draw PL perpendicular to QN . Since PMNL

is a rectangle PL = MN and MP = NL. Now from right triangle PLQ we have

PQ2 = PL2 + LQ2

= MN2 + (NQ−NL)2

= MN2 + (NQ−ML)2

= [(x2 − x1)
2 + (y2 − y1)

2] + (z2 − z1)
2]

∴ PQ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 2
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Theorem 1.2.2. The point of division R of the line joining P (x1, y1, z1) and Q(x2, y2, z2)

internally in the ratio l : m is
(

lx2+mx1
l+m , ly2+my1

l+m , lz2+mz1
l+m

)

Proof. Let P (x1, y1, z1) and Q(x2, y2, z2) be the two given points. Let R (x, y, z) be

the point of division of PQ in the ratio l : m internally.

Therefore
PR
RQ =

L
M .

Draw PL,RN and QM perpendicular to the xoy plane. Draw PT and RS perpendic-

ular to NR and MQ respectively

Z

X

Y

P
R
T S

Q

L
N

M

Clearly, ∆PRT is similar to ∆RQS, we have

TR
SQ =

PR
RQ =

l
m

Therefore
z−z1
z2−z =

l
m

z =
lz2+mz1
l+m

Similarly, we can prove that the other two coordinates of R are x =
lx2+mx1
l+m

and y =
ly2+my1
l+m 2

Corollary 1.2.3. If R divides the line joining P (x1, y1, z1) and Q(x2, y2, z2) exter-

nally in the ratio l : m then R is

(

lx2−mx1
l−m , ly2−my1l−m , lz2−mz1l−m

)
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Corollary 1.2.4. The midpoint of the line joining P (x1, y1, z1) and Q(x2, y2, z2) is
(

x1+x2
2 , y1+y22 , z1+z22

)

Corollary 1.2.5. The centroid of the triangle whose vertices are (xi, yi, zi) i= 1,2,3

is
(

x1+x2+x3
3 , y1+y2+y33 , z1+z2+z33

)

.

1.3 DIRECTION COSINES AND DIRECTION

RATIOS

Definition 1.3.1. Let α, β, γ be the angles made by a straight line with the positive

directions of the coordinate axes. These angles are called the direction angles and

the cosines of these angles are called the direction cosine (d.c) of the line.

Note 1.3.2. The direction cosines of a line are usually denoted by l,m, n so that

l = cos α, m = cos β, and n = cos γ.

Note 1.3.3. The direction cosines of the x, y and z-axis are respectively 1, 0, 0; 0, 1, 0

and 0, 0, 1.

Theorem 1.3.4. If l,m, n are the d.c of a line the l2 +m2 + n2 = 1.

Proof. Consider the line λ which has the direction cosines l,m, n. Draw a line through

O parallel to the line λ. Take any point P (x, y, z) on the line λ. Let OP = r.

Then r =
√

x2 + y2 + z2 · · · (1)

Draw PN perpendicular to OX.

From right ∆ ONP , cos α = x
r
. Similarly, cos β = y

r
and cos γ = z

r
.

∴ l2 +m2 + n2 = cos2 α+ cos2 β + cos2 γ

=
x2

r2
+
y2

r2
+
z2

r2

=
x2 + y2 + z2

r2

= 1 (using (1))
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Hence the theorem. 2

Definition 1.3.5. Any three numbers a, b, c which are proportional to d.c of a line are

called the direction ratios (d.r) or direction numbers of the line. Hence l = ak;

m = bk; n = ck where k is a nonzero constant.

1.3.1 The relation between direction cosines and direction ra-

tios

If we know the direction ratios a, b, c of a line then we can find the direction cosines

as follows. We have l = ak; m = bk; n = ck; for k 6= 0.

Now, l2 +m2 + n2 = 1. Hence k2(a2 + b2 + c2) = 1

Therefore

k = ± 1√
a2 + b2 + c2

.

Therefore d.c are

± a√
a2 + b2 + c2

,± b√
a2 + b2 + c2

,± c√
a2 + b2 + c2

,

where the positive or negative sign is taken throughout.

Theorem 1.3.6. The direction ratios of the line joining P (x1, y1, z1) and Q(x2, y2, z2)

are x2 − x1, y2 − y1, z2 − z1.

Proof. In Fig. 1.1, LQ = z2 − z1.

Let PQ make angles α, β, γ with the positive direction of the coordinate axes.

In the right-angled triangle ∆PLQ,∠PQL = γ.

∴ cos γ = LQ
PQ

= z2−z1
r

where r = PQ.

Similarly, cosα = x2−x1

r
and cos β = y2−y1

r

∴ x2 − x1, y2 − y1, z2 − z1 are the direction of PQ. 2

Corollary 1.3.7. If P (x1, y1, z1) and Q(x2, y2, z2) are two points, then the d.c

of the line PQ are

± x2 − x1
√

∑

(x2 − x1)2
,± y2 − y1

√
∑

(x2 − x1)2
,± z2 − z1

√
∑

(x2 − x1)2
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.

Theorem 1.3.8. The angle between two lines whose direction cosines are l,m, n and

l1,m1, n1 respectively is given by cos θ = ll1 +mm1 + nn1.

Proof. Let OP and OQ be the two lines drawn through O and parallel to the given

lines. Let θ be the angle between the lines.

Let OP = r and OQ = r1.

Therefore P is (lr,mr, nr) and Q is (l1r1,m1r1, n1r1).

In ∆OPQ, we have PQ2 = OP 2 +OQ2 − 2 OP OQ cos θ · · · (1)

Therefore PQ2 = r2 + r2
1 − 2rr1 cos θ

Also PQ2 = (l1r1 − lr)2 + (m1r1 −mr)2 + (n1r1 − nr)2

= r2
1(l

2
1 +m2

1 + n2
1) + r2(l2 +m2 + n2) − 2rr1(ll1 +mm1 + nn1)

= r2 + r2
1 − 2rr1(ll1 +mm1 + nn1) · · · (2)

From(1) and (2), we get cos θ = ll1 +mm1 + nn1. 2

Corollary 1.3.9. sin θ =
√

(lm1 − l1m)2 + (mn1 −m1n)2 + (nl1 − n1l)2

sin2 θ = 1 − cos2 θ

= 1 − (ll1 +mm1 + nn1)
2

= (l +m2 + n2)(l21 +m2
1 + n2

1) − (ll1 +mm1 + nn1)
2

= (l2m2
1 − 2lml1m1 + l21m

2) + (m2n2
1 − 2mnm1n1 +m2

1n
2)

+ (n2l21 − 2nn1ll1 + n2
1l

2)

Therefore sin θ =
√

(lm1 − l1m)2 + (mn1 −m1n)2 + (nl1 − n1l)2

Corollary 1.3.10. If a, b, c and a1, b1, c1 are the direction ratios of the lines then the

angle between the lines is given by cos θ =
aa1+bb1+cc1√
∑

a2
√

∑

a2
1

and

sin θ =

√
(ab1−a1b)2+(bc1−b1c)2+(ca1−c1a)2√

a2+b2+c2
√
a2
1+b

2
1+c

2
1

9



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

Corollary 1.3.11. Two lines whose d.c are l,m, n and l1,m1, n1 respectively are per-

pendicular if and only if ll1 +mm1 + nn1 = 0.

Corollary 1.3.12. Two line whose d.r are a, b, c and a1, b1, c1 are perpendicular if and

only if aa1 + bb1 + cc1 = 0

Corollary 1.3.13. Two lines with direction cosines l,m, n and l1,m1, n1 are parallel

if and only if l
l1

= m
m1

= n
n1

and consequently if and only if a
a1

= b
b1

= c
c1

.

Proof. The two lines are parallel ⇔ sin θ = 0

⇔ (lm1 − l1m)2 + (mn1 −m1n)2 + (nl1 − n1l)
2 = 0

⇔ lm1 − l1m = 0;mn1 −m1n = 0;nl1 − n1l = 0

⇔ l

l1
=

m

m1

=
n

n1

consequently if and only if a
a1

= b
b1

= c
c1

. 2

Area of the triangle with vertices A(x1, y1, z1); B(x2, y2, z2); C(x3, y3, z3)

Let the area of the triangle ABC be ∆. Let the angles made by the plane of the

∆ABC with the coordinate planes be α, β, γ respectively. Then l,m, n are the direction

cosines of the normal to the plane containing triangle ABC so that l2 +m2 + n2 = 1.

Then, cosα = l; cos β = m; cos γ = n;

∴ cos2 α+ cos2 β + cos2 γ = 1 · · · (1)

Let A1, B1, C1;A2B2C2 and A3B3C3 be the orthogonal projections of the triangle ABC

on the xy plane; zx plane; yz plane respectively. Then the vertices of A1B1C1 are

(x1, y1, 0);(x2, y2, 0);(x3, y3, 0); the vertices of A2B2C2 are (x1, 0, z1);(x2, 0, z2);(x3, 0, z3)

and the vertices of A3B3C3 and (0,y1, z1);(0, y2, z2); (0, y3, z3).

∴ ∆1 = 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

; ∆2 = 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 z1 1

x2 z2 1

x3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

and ∆3 = 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 z1 1

y2 z2 1

y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We know that projection of the area A enclosed by a curve in a plane is A cos θ
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where θ is the angle between the plane of the curve containing the given area and

the plane of projection. Since ∆1,∆2,∆3 are the orthogonal projections of ∆ we have

∆1 = ∆ cosα ; ∆2 = ∆ cos θ ; ∆3 = ∆ cos γ.

∆2
1 + ∆2

2 + ∆2
3 = ∆2(cos2 α+ cos2 β + cos2 γ) = ∆2 (using (1))

∴ ∆ =
√

∆2
1 + ∆2

2 + ∆2
3

1.4 Solved Problems.

Problem 1.4.1. Show that the point (2, 3, 5), (−1, 5,−1) and (4,−3, 2) form an

isosceles right-angled triangle.

Let the points be A,B,C respectively.

Then AB2 = (2 + 1)2 + (3 − 5)2 + (5 + 1)2 = 49.

BC2 = (−1 − 4)2 + (5 + 3)2 + (−1 + 2)2 = 98.

CA2 = (4 − 2)2 + (−3 − 3)2 + (2 − 5)2 = 49.

Therefore AB = CA and BC2 = AB2 + CA2.Hence ∠A = 90◦.

Therefore ABC is an isosceles right-angled triangle.

Problem 1.4.2. The line joining A (5, 2, 4) and B(−4, 3, 5) meets the planes Y OZ,

XOY in C,D respectively. Find the coordinates of C and D and the ratios in which

they divide AB.

The point which divides AB in the ratio λ : 1 has coordinates
(

5−4λ
1+λ

, 2+3λ
1+λ

, 4+5λ
1+λ

)

. If

the point lies on the Y OZ plane its x-coordinate must be zero and so 5−4λ = 0, λ = 5
4
.

Therefore C is the point
(

0, 23
9
, 41

9

)

.

Since λ is positive, C divides AB in ratio 5 : 4.

If the point lies on the XOY plane, its z-coordinate must be zero and so 4 + 5λ = 0,

That is, λ = −4
5
. D is therefore (41,−2, 0) and it divides AB externally in the ratio

4 : 5.

Problem 1.4.3. Find the direction cosines of the line joining the points (3,−5, 4) and

(1,−8,−2).

The direction cosines of the line are proportional to 3 − 1,−5 + 8, 4 + 2.
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That is , proportional to 2,3,6.

Let them be 2k, 3k, 6k.

But (2k)2 + (3k)2 + (6k)2=1.

That is, 49k2=1 i.e., k = ±1
7
.

Taking the positive value for k, the direction cosines of the line are 2
7
, 3

7
, 6

7
.

Problem 1.4.4. Find the ratio in which the xy plane divides the line joining the points

A(7, 4,−2) and B(8,−5, 3). Also find the point of division.

Solution. Let AB meet the xy-plane at C. Let P be any point on AB dividing

it in the ratio k : 1.

Then P is
(

8k+7
k+1 ,

−5k+4
k+1 , 3k−2

k+1

)

· · · (1)

If this lies on the xy plane then z-coordinate of C must be zero.

∴
3k−2
k+1 = 0. Hence 3k − 2 = 0 so that k = 2

3 .

∴ C divides AB internally in the ratio 2:3.

∴ Substituting k = 2
3 in (1), we get C is

(

37
5 ,

2
5 , 0

)

.

Problem 1.4.5. Find the direction cosines of the line which is equally inclined to axes.

Solution. Let the lines have direction cosines l,m, n where l = cosα; m = cos β;

n = cos γ where α, β, γ are the angles which the line makes with the positive direction

of the x, y, z axes respectively.

Given that the line is equally inclined to the axes. Hence α = β = γ.

We know, for the line, l2 +m2 + n2 = 1.

=⇒ cos2 α+ cos2 β + cos2 γ = 1.

=⇒ 3 cos2 α = 1. Hence cos2 α = 1/3, which implies cosα = ±(1/
√

3).

∴ The direction cosines are 1√
3
, 1√

3
, 1√

3
.

Problem 1.4.6. Find the d.c of the lines AB and CD where A = (1, 2,−4), B(2, 1,−3),

C(4, 6,−1) and D(5, 7, 0). Hence find the acute angle between them.

Solution. The d.r of the line AB are 1 − 2, 2 − 1,−4 + 3.

=⇒ d.r of AB are −1, 1,−1.
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∴ d.c of AB are −1√
3
, 1√

3
, −1√

3
(taking the positive value of the root sign).

The d.r of the line CD are 4 − 5, 6 − 7,−1 − 0.

=⇒ d.r of CD are −1,−1,−1.

∴ d.c of CD are −1√
3
, −1√

3
, −1√

3
.

Let θ be the acute angle between AB and CD.

∴ cos θ = ll1 +mm1 + nn1 = 1
3
− 1

3
+ 1

3
= −1

3

∴ θ = cos− 1(1/3) (since θ is acute)

Problem 1.4.7. Show that the angle between two diagonals of a cube is cos− 1( 1√
3
).

Solution. Let the length of each side of the cube be a.

OP and RB is a pair of diagonals where O = (0, 0, 0), P = (a, a, a), R = (0, 0, a) and

B = (a, a, 0).

∴ d.r of OP are a, a, a.

Hence d.c of OP are 1√
3
, 1√

3
, 1√

3
.

d.r of RB are a, a,−a.

R
(0,0,a)

q(a,0,a)

(a,a,0)

(a,0,0)

C

S
(0,a,a)

O
(0,0,0)

A
(0,a,0)

P
(a,a,a)

Z

Y

X

B

Hence the d.c of RB are 1√
3
, 1√

3
,− 1√

3

Therefore the angle θ between the two diagonals is given by cos θ = 1√
3

1√
3

+ 1√
3

1√
3

+

1√
3

(

− 1√
3

)

.
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=1
3

+ 1
3
− 1

3
= 1

3

∴ θ = cos−1(1
3
).

Problem 1.4.8. A line makes angles α, β, γ, δ with four diagonals of a cube. Prove

that sin2α+ sin2β + sin2γ + sin2δ = 8
3
.

Solution. Refer the above figure.

The four diagnols of the cube are OP, RB, AQ and SC.

The direction cosines of

OP =
1√
3
,

1√
3
,

1√
3

RB =
1√
3
,

1√
3
,− 1√

3

AQ =
1√
3
,− 1√

3
,

1√
3

SC =
1√
3
,− 1√

3
,

1√
3

Let the d.c of the given line be l,m,n.

Let it make angles α, β, γ, δ with these four diagonals respectively.

∴ cosα =
l√
3

+
m√
3

+
n√
3

cos β =
l√
3

+
m√
3
− n√

3

cos γ =
l√
3
− m√

3
+

n√
3

cos δ =
l√
3
− m√

3
− n√

3

cos2 α+ cos2 β + cos2 γ + cos2 δ = 4
3
(l2 +m2 + n2) = 4

3

∴ (1 − sin2 α) + (1 − sin2 β) + (1 − sin2 γ) + (1 − sin2 δ) = 4
3

∴ sin2 α+ sin2 β + sin2 γ + sin2 δ = 4 − 4
3

= 8
3

Problem 1.4.9. A line makes 30◦ and 120◦ with the positive directions of the x and

y axes respectively. What angle does it make with the positive direction of the z-axis?
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Solution. l = cos 30◦ =
√

3
2

and m = cos 120 = −1
2
.

Now l2 +m2 + n2 = 1.

∴

(√
3

2

)2

+
(

−1
2

)2
+ n2 = 1

∴ n2 = 1 − 3
4
− 1

4
= 0.

Therefore n = 0. Hence cos γ=0.

∴ γ = 90◦.

Therefore the line makes 90◦ with the positive direction of the z-axis.

Problem 1.4.10. Find the locus of P such that PA2 + PB2 = k2 where A is (3, 4, 5)

and B is (−2, 3,−7) and k is constant.

Solution. Let P be (x0, y0, z0) be a point on the locus. PA2 + PB2 = k2

⇒ (x0 − 3)2 + (y0 − 4)2 + (z0 − 5)2 + (x0 + 1)2 + (y0 − 3)2 + (Z0 − 7)2 = k2.

⇒ 2x2
0 + 2y2

0 + 2z2
0 − 4x0 − 14y0 + 4z0 + 109 − k2 = 0.

Therefore the locus of (x0, y0, z0) is 2x2 + 2y2 + 2z2 − 4x− 14y + 4z + 109 − k2 = 0.

Problem 1.4.11. Show that (i) the lines joining the midpoints of the opposite edges

of a tetrahedron are concurrent;

(ii) their point of concurrency is the centroid of the tetrahedron.

Solution. Let ABCD be the tetrahedron whose vertices are A(x1, y1, z1);

B(x2, y2, z2); C(x3, y3, z3) and D(x4, y4, z4).

(i) AC,BD;AB,CD;AD,BC are the three pairs of opposite edges.

Let M1,M2,M3,

M4,M5,M6 be their midpoints respectively.

M1 is
(

x1+x3

2 , y1+y3

2 , z1+z3

2

)

; M2 is
(

x2+x4

2 , y2+y4

2 , z2+z4

2

)

.

Therefore the mid points of the line M1M2 is
(

∑

x1

4
,

∑

y1
4
,

∑

z1
4

)

.

The symmetry of this result shows that midpoints of M3M4 and M5M6 is the same as

the midpoint of M1M2.

Hence M1M2,M3M4,M5M6 are concurrent.

(ii) We know that the centroid G of the tetrahedron divides the line joining each vertex

to the centroid of the opposite triangular face in the ratio 3:1

Let H be the centroid of the triangular face BCD.
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Therefore H is
(

x2+x3+x4

3 , y2+y3+y4

3 , z2+23+24

3

)

We have AG : GH = 3 : 1.

Therefore the x-coordinate of G is
3(x2+x3+x4

3 )+1.x1

3+1 =
∑

x1

4

Therefore G is
(

∑

x1

4
,

∑

y1
4
,

∑

z1
4

)

.

Hence the result follows.

Problem 1.4.12. If two pairs of opposite edges of a tetrahedron are perpendicular.

Show that third pair is also perpendicular.

Solution. Let AB,CD;AC,BD;AD,BC be the three pairs of opposite edges of a

tetrahedron ABCD; let the first two pairs be perpendicular.

That is AB ⊥ CD and AC ⊥ BD.

We claim that AD ⊥ BC.

Let (xi, yi, zi) i=1,2,3,4 be the vertices of the tetrahedron ABCD.

The d.r of AB are x2 −x1, y2 − y1, z2 − z1 and the d.r of CD are x4 −x3, y4 − y3, z4 − z3

AB ⊥ CD ⇒ (x2 − x1)(x4 − x3) + (y2 − y1) + (y4 − y3) + (z2 − z1)(z4 − z3) = 0 ...(1)

AC ⊥ BD ⇒ (x3 − x1)(x4 − x2) + (y3 − y1) + (y4 − y2) + (z3 − z1)(z4 − z2) = 0 ...(2)

Now, (x2 − x1)(x4 − x3) + (y2 − y1) + (y4 − y3) + (z2 − z1)(z4 − z3)

= x2x4 − x2x3 − x1x4 + x1x3 − x3x4 + x3x2 + x1x4 − x1x2

= x2x4 + x1x3 − x3x4 − x1x2

= x4(x2 − x3) − x1(x2 − x3)

= (x4 − x1)(x2 − x3) · · · (3)

We get similar results by interchanging y and z with x in (3).

Subtracting (2) from (1) and using (3), we get

(x4 − x1)(x2 − x3) + (y4 − y1)(y2 − y3) + (z4 − z1)(z2 − z3) = 0

∴ AD ⊥ BC. Hence the result.

Problem 1.4.13. If the sum of the squares of opposite sides of a tetrahedron are equal

prove that its opposite sides are at right angles.

Solution. Let O(0, 0, 0); A(x1, y1, z1); B(x2, y2, z2); C(x3, y3, z3) be the coordinates

of the vertices of the tetrahedron.
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ThenOA,BC;OB,AC;OC,AB are the three pairs of opposite sides of the tetrahedron.

Given OA2 +BC2 = OB2 + CA2 = OC2 + AB2.

We have to prove OA,OB,OC are perpendicular to BC,AC,AB respectively.

Taking OA2 +BC2 = OB2 + CA2, we get

x2
1 + y2

1 + z2
1 + (x3 − x2)

2 + (y3 − y2)
2 + (z3 − z2)

2 = x2
2 + y2

2 + z2
2 + (x3 − x2)

2 + (y3 −
y2)

2 + (z3 − z2)
2.

∴ 2(x2x3 + y2y3 + z2z3) = 2(x1x3 + y1y3 + z1z3).

That is, x3(x2 − x1) + y3(y2 − y1) + z3(z2 − z1) = 0

Therefore OC is perpendicular to AB. Similarly, we can prove OB is perpendicular to

AC and OC is perpendicular to AB.

Problem 1.4.14. From a point P (x1, y1, z1) a plane is drawn at right angles to OP

meeting the coordinate axes at A,B,C. Prove that the area of the triangle ABC is r5

2x1y1z1

where r is the algebraic distance of OP.

Z

X

Y B

O
A1

α
x1

C

A

P (x1, y1, z1)

Solution. From the right triangle OPA, we have OA=r secα where α is the angle

which line makes with the positive direction of the x-axis.

Therefore A is (r secα, 0, 0). similarly, B(0, r sec β, o); C(0, 0, sec γ)

From the right-angled triangle OA1P, we have x1 = r cosα.

∴ secα = r/x1. Similarly sec β = r/y1 and sec γ = r/x1.

Therefore, the vertices of the triangles ABC areA(r2/x1, 0, 0);B(0, r2/y1, 0);C(0, 0, r2/z1)

Now, arc of ∆ABC = ∆ =
√

∆2
1 + ∆2

2 + ∆2
3 where

∆1 = 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 z1 1

y2 z2 1

y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1

r2/y1 0 1

0 r2/z1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r4

2y1z1
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Similarly ∆2 = r4

2z1x1
and ∆3 = r4

2x1y1

∴ ∆ =
(

1
2

)

√

(

r8

x2
1y

2
1

+ r8

z2
1y2

1

+ r8

x2
1z

2
1

)

=
(

r4

2

)

√

(

x2
1+y2

1+z2
1

x2
1y

2
1z2

1

)

= r5

2x1y1z1
(since x2

1 + y2
1 + z2

1 = r2)

Problem 1.4.15. Show that the straight lines whose d.c are given by 2l −m + 2n=0

and lm+mn+ nl = 0 are at right angles.

Solution. Given 2l −m+ 2n = 0

∴ 2( l
n
) − (m

n
) + 2 = 0 · · · (1)

Also given lm+mn+ nl = 0.

∴ ( l
n
)(m

n
) + (m

n
+ ( l

n
) = 0 · · · (2)

From (1), we get m
n

= 2( l
n
) + 2 · · · (3)

Substituting(3) in (2) we get 2( l
n
)2 + 2( l

n
) + 2( l

n
) + 2 + ( l

n
) = 0

2( l
n
)2 + 5( l

n
) + 2 = 0

This is a quadratic equation in l
n

and solving we get l
n

= −2,−1
2
.

From(3), we get m
n

= −2, 1

If l1,m1, n1 and l2,m2, n2 are the direction cosines of the two given lines then we have

l1
n1

= −2; m1

n1

= −2.

l2
n2

= −1
2
; m2

n2

= 1

∴
l1l2
n1n2

= 1 and m1m2

n1n2

= −2

∴ l1l2 = n1n2 and m1m2 = −2n1n2

Now, l1l2 +m1m2 + n1n2 = n1n2 − 2n1n2 + n1n2 = 0

Therefore the two lines are perpendicular.

Exercises 1.4.16. 1. Find the distance between the following pairs of points (1,−3, 2)

and (2, 5,−4).

2. Find the point dividing line joining (3, 2, 1) and (3,−3, 6) in the ratio 3 : 2

‘internally and externally.
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3. Find the direction cosines of the lines whose direction ratios are (i) 3,−4, 5 (ii)

2,−1, 3

4. Find the direction ratios and direction cosines of the line joining the points

(1, 2,−1) to (2, 1, 3).

5. Find the direction cosines of the lines which makes 45◦ with OX, 60◦ with OY

and 120◦ with OZ.

1.5 plane

In this section, we study several forms of the equation of a plane in R3.

Definition 1.5.1. A plane in R3 is defined to be the locus of a point (x, y, z) satisfying

a linear equation of the form ax+ by + cz = 0 where a, b, c are not all zero.

Theorem 1.5.2. Equation of a plane pasing through a given point (x1, y1, z1) and

having a normal whose d.r are a, b, c is given by a(x− x1) + b(y − y1) + c(z − z1) = 0.

Proof. Let A(x1, y1, z1) be a given point on the plane. Let LM be a normal to the

plane. The d.r of LM are a, b, c. Let P (x, y, z) be any point on the plane. Then AP

is perpendicular to LM .

Also d.r of AP are x− x1, y − y1, z − z1.

∴ a(x− x1) + b(y − y1) + c(z − z1) = 0 · · · (1)

Since P (x, y, z) is arbitrary, equation (1) represents the equation of the plane. 2

Theorem 1.5.3. The equation of the plane passing through the points A(x1, y1, z1),

B(x2, y2, z2) and C(x3, y3, z3) is given by
















x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

















= 0. · · · (1)
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Proof. Let the equation of the plane be ax+ by + cz + d = 0. · · · (2)

Since A,B,C lie on this plane we have

ax1 + by1 + cz1 + d = 0 · · · (3)

ax2 + by2 + cz2 + d = 0 · · · (4)

ax3 + by3 + cz3 + d = 0 · · · (5)

Eliminating the constants a, b, c from (2)(3)(4) and (5) we get the result(1). 2

Note 1.5.4. In numerical problems, it is convenient to solve the three equation (3),

(4),and (5) in terms of d directly and get the equation of the plane on substitution in

(2).

Aliter. The equation of any plane passing through (x1, y1, z1) can be written in the

form

a(x− x1) + b(y − y1) + c(z − z1) = 0 · · · (1)

If this passes through (x2, y2, z2) and (x3, y3, z3) also, we have

a(x− x1) + b(y − y1) + c(z − z1) = 0 · · · (2)

a(x− x1) + b(y − y1) + c(z − z1) = 0 · · · (3)

Eliminating a, b, c from (1), (2) and (3), we have










x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1











=0

which is the equation of the plane passing through (x1, y1, z1), (x2, y2, z2) and

(x3, y3, z3).

Note 1.5.5. To verify whether four points are coplanar we have to find the equation

of the planes passing through any three points and check whether the fourth point lie

on it or not. Equivalently, the four points are coplanar if
















x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

















=0
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Theorem 1.5.6. (Intercepts form) The equation of the plane having intercepts

a, b, c with the coordinate axes is x
a

+ y
b

+ z
c

= 1.

Proof. Let the equation plane be Ax+By + Cz +D = 0 · · · (1)

Let this plane meet the coordinate axes OX,OY,OZ at P,Q,R respectively.

∴ OP = a; OQ = b; OR = c.

Therefore P is (a, 0, 0); Q is (0, b, 0) and R is (0, 0, c).

Since P,Q,R lie on the plane we have

Aa+D = 0;Bb+ d = 0;Cc+D = 0.

∴ A = −D
a
;B = −D

b
;C = −D

c
.

Therefore, equation (1) becomes −D
a
x− D

b
y −−D

c
z +D = 0.

That is, x
a

+ y
b

+ z
c

= 1.

Hence the theorem. 2

Theorem 1.5.7. (Normal form) The equation of a plane can be written as

lx+my + nz = p where l,m, n are the d.c of the normal to the plane and p is the

length of the perpendicular from the origin to plane.

Proof. Let the plane meet the coordinate axes at A,B,C with intercepts a, b, c;

Therefore, the equation of the plane is x
a

+ y
b

+ z
c
=1 · · · (1)

Let the length of the perpendiuclar OD from O to the plane be p.

Now, l = cos∠DOA = OD
OA

= p
a
.

Therefore a = p
l
. Similarly b = p

m
and c = p

n
.

Therefore equation (1) of the plane becomes lx
p

+ my
p

+ nz
p

= 1.

That is, lx+my + nz = p. 2

Note 1.5.8. The above equation of the plane can also be written as

x cos α+ y cos β + z cos γ = p where α, β, γ are the angles which the normal to the

plane makes with the coordinate axes.
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1.5.1 Transformation to the normal form

The general equation of the plane ax+ by + cz + d = 0. · · · (1)

where a2 + b2 + c2 6= 0 can be transformed to the normal form

lx+my + nz = p. · · · (2)

Equations (1) and (2) represent the same plane if a
l

= b
m

= c
n

= −d
p

= k (say)

Therefore, l = a
k
,m = b

k
, n = c

k
and p=- d

k
.

Since l2 +m2 + n2 = 1 we get k = ±
√
a

2
+ b2 + c2

∴ l = ± a√
a2+b2+c2

; m = ± b√
a2+b2+c2

;

n = ± c√
a2+b2+c2

; and p = ± −d√
a2+b2+c2

· · · (3)

Now we choose the sign of k opposite to that of d so as to make p positive.

Substituting (3) in (2), we obtain the required normal form.

Note 1.5.9. For the plane ax+ by + cz + d = 0 a, b, c are d.r of the normal to plane

and ± a√
(
∑

a2)
,± b√

(
∑

b2)
,± c√

(
∑

a2)
(with suitable sign so that p is always

positive) denote the d.c of the normal to the plane.

Example 1.5.10. The d.r of the normal to plane 2x− 3y + 6z + 7 = 0 are 2,−3, 6.

Hence the direction cosines are −2
7
, 3

7
,−6

7
and the length of the normal from the

origin to the plane is 7
7

= 1

1.6 ANGLE BETWEEN TWO PLANES

Definition 1.6.1. Angle between two planes is defined to the angle between the

normals to them from any point.

Theorem 1.6.2. The angle θ between planes ax+ by + cz + d = 0 and

a1x+ b1y + c1z + d1 = 0 is given by cosθ = ±
[

aa1+bb1+cc1√
(
∑

a2)
√

(
∑

a2

1
)

]

Proof. The d.c of the normal to plane ax+ by + cz + d = 0 are

a√
(
∑

a2)
, b√

(
∑

a2)
, c√

(
∑

a2)
.

The d.c of the normal to the plane a1x+ b1y + c1z + d1 = 0 are
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a1√
(
∑

a2

1
)
, b1√

(
∑

a2

1
)
, c1√

(
∑

a2

1
)

Therefore the angle between the planes is given by cos θ = ±
[

aa1+bb1+cc1√
(
∑

a2)
√

(
∑

a2

1
)

]

2

Corollary 1.6.3. The planes ax+ by + cz + d = 0; a1x+ b1y + c1z + d1 = 0 are at

right angles if and only if aa1 + bb1 + cc1=0

Corollary 1.6.4. The planes ax+ by + cz + d = 0 and a1x+ b1y + c1z + d1 = 0 are

parallel if and only if a
a1

= b
b1

= c
c1

Hence the equation of a plane parallel to

ax+ by + cz + d = 0 is of the form ax+ by + cz + k = 0.

Theorem 1.6.5. Length of the perpendicular from a point A(x1, y1, z1) to the plane

ax+ by + cz + d = 0 is ±
[

ax1+by1+cz1+d√
(a2+b2+c2)

]

.

Proof. Let lx+my+nz+ = p be the normal form of the plane ax+ by+ cz+ d = 0.

Therefore l = ± a√
(
∑

a2)
, m = ± b√

(
∑

a2)
,n=± c√

(
∑

a2)
, and p = ± d√

(
∑

a2)
.

Now equation of the plane through the given point A(x1, y1, z1) and parallel to the

plane lx+my + nz = p is given by lx+my + nz = p1

where p1 is the length of the perpendicular from the origin to the plane.

Since (x1, y1, z1) lies on (1) we have lx1 +my1 + nz1 = p1

Now the length of the perpendicular from (x1, y1, z1) to the given plane is

p− p1 = p− lx1 −my1 − nz1

= ± d
√

(
∑

a2)
−

{

± ax1
√

(
∑

a2)
,± by1

√

(
∑

a2)
,± cz1

√

(
∑

a2)

}

.

= ±
[

ax1 + by1 + cz1 + d
√

(
∑

a2)

]

Hence the result. 2

Theorem 1.6.6. Equation of a plane through the line of intersection of two given

planes π1 = 0 and π2 = 0 is π1 + λπ2 = 0 (λ is a constant).
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Proof. Let π1 = a1x+ b1y + c1z + d1 = 0 · · · (1)

π2 = a2x+ b2y + c2z + d2 = 0 · · · (2)

be the two equations of the two planes.

Consider the equation π1 + λπ2 = 0

That is, (a1x+ b1y + c1z + d1)(a2x+ b2y + c2z + d2) = 0 · · · (3)

Equation (3) is of the first degree in x, y, z and hence represents a plane.

further any point (x1, y1, z1) satisfying (1) and (2) also satisfies (3). Hence (3) passes

through the line of intersection (1) and (2).

Two sides of a plane. Consider a plane and two points A and B not lying in the

plane. Then the points A,B may lie on (i) opposite sides of the plane or (ii) in the

same side of the plane.

If A,B lie on either side of the plane, the segment AB has common point with the

plane whereas if A,B lie in the same side of the plane the segment AB does not have

a common point with the plane.

We proceed to find a criterion for two given points to lie on the same or different

sides of a given plane. 2

Theorem 1.6.7. Two points A(x1, y1, z1),B(x2, y2, z2) lie on the same or different

sides of the plane ax+ by + cz + d = 0 according as ax1 + by1 + cz1 + d and

ax2 + by2 + cz2 + d are of the same or different signs.

Proof. Let the line AB meet the given plane at P . Let P divide AB in the ratio

k : 1. If k is positive P divides AB internally and if k is negative P divides AB

externally.

That is., if k is positive A,B lie on opposite sides of the plane and if k is

negative A,B lie on the same side of the plane.

P is
(

kx2+x1

k+1
, ky2+y1

k+1
, kz2+z1

k+1

)

and P lies on the plane.

Hence we have a
(

kx2+x1

k+1

)

+ b
(

ky2+y1
k+1

)

+ c
(

kz2+z1
k+1

)

+ d = 0

∴ k(ax2 + by2 + cz2 + d) + (ax1 + by1 + cz1 + d) = 0

∴ k = −
(

ax1+by1+cz1+d
ax2+by2+cz2+d

)

k is negative if ax1 + by1 + cz1 + d and ax2 + by2 + cz2 + d are of opposite signs.

Hence the result follows. 2
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Example 1.6.8. The origin and (2,−3, 7) lie on the same side of the plane

2x− 3y + 2z + 8 = 0.

For, by substituting the two points in the expression 2x− 3y + 2z + 8 the values are

of same signs.

Example 1.6.9. (2, 1, 1) and (2, 5,−1) lie on different sides of the plane

x− 2y + 3z + 4 = 0.(verify)

Example 1.6.10. Find the equation to the plane through (3, 4, 5) parallel to the

plane 2x+ 3yz = 0.

The equation to any plane parallel to this plane is

2x+ 3y − +k = 0.

If it passes through the point (3, 4, 5).

2(3) + 3(4) − 5 + k = 0

That is,k = −13.

Hence the equation of the required plane is 2x+ 3y − z − 13 = 0.

Example 1.6.11. Find the angle between the planes

2x− y + z = 6, x+ y + 2z = 3.

The direction cosines of the normals to the planes are proportional to 2,-1,1 and 1,1,2

respectively.

If θ be the angle between the planes then,

cosθ = 2−1+2√
(22+(−1)2+12)

√
(12+12+22)

= 3√
6
√

6
= 1

2

∴ θ = π
3

Example 1.6.12. Find the equation of the plane which passes through the point

(−1, 3, 2) and perpendicular to the two planes x+ 2y + 2z = 5, 3x+ 3y + 2z = 8.

Let the equation of the required plane be Ax+By + Cz + d = 0.

It passes through the point (−1, 3, 2).

∴ − A+ 3B + 2C +D = 0 · · · (1)

The plane is perpendicular to the planes x+ 2y + 2z = 5 and 3x+ 3y + 2z = 8
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∴ A+ 2B + 2C = 0 · · · (2)

3A+ 3B + 2C = 0 · · · (3)

From the equations(2)(3) we get A
−2

= B
4

= C
−3

Let each be equal to k.

Then A = −2k, B = 4k, C = −3k.

Substituting the value of A,B,C in equation(1), we get D = −8k.

Hence the eqution of the plane is −2kx+ 4ky − 3kz − 8k = 0.

That is, 2x− 4y + 3z + 8 = 0.

Example 1.6.13. Find the distance between the parallel planes 2x− 2y − z + 3 = 0

and 4x− 4y + 2z + 5 = 0.

Find a point on the plane 2x− 2y − z + 3 = 0 and the distance

between the two parallel planes is the perpendicular distance from

that point to the plane 4x− 4y + 2z + 5 = 0.

The first plane meets the z-axis at the point (0, 0,−3).

The length of the perpendicular from (0, 0,−3) to the plane

4x− 4y + 2z + 5 = 0 is ± −6+5√
(42+42+22)

= ±1
6
.

Hence the distance between the parallel planes is 1
6
.

1.7 Projection of a line

Definition 1.7.1. (i) The projection of a point on a line is the foot of the

perpendiculars drawn from the point on the line.

(ii) The projection of a finite straight line on another is the portion of the second

line intercepted between the projections of the extremities of the finite line on

the second.

Thus, the projection on AB on a line l is A1B1, where A1 and B1 are the feet of the

perpendiculars drawn from the points A,B on l.

Result 1.7.2. The projection of a finite straight line AB on another straight line CD

is AB cos θ where θ is the angle between AB and CD.
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Proof. Draw AD′ parallel to CD. Then the angle between AB and AD′, That is,

∠BAD′ is θ. Through A and B draw two planes, each perpendicular to CD, the first

one cutting CD and AD′ at P and A and the second cutting them at Q and D′

respectively.

AD′ is parallel to PQ; AP is parallel to D′Q.

∴ AD′ = PQ.

P Q

B
D′A

C D

PQ is the projection of the line AB and CD.

But BD′ is perpendicular to AD.

∴ AB cos θ = AD′.

∴ Projection of AB on CD = BQ

= AD′

= AB cos θ

2

1.7.1 Solved problems

Problem 1.7.3. Find the equation of the plane passing through (1, 1, 0), (1, 2, 1) and

(−2, 2,−1)

Solution. Let the equation of the required plane be ax+ by + cz + d = 0 · · · (1)
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Since the given points lie on it we have

a+ b+ d = 0 · · · (2)

a+ 2b+ c+ d = 0 · · · (3)

−2a+ 2b− c+ d = 0 · · · (4)

(2) − (3) ⇒ −b− c = 0 · · · (5)

(3) − (4) ⇒ 3a+ 2c = 0 · · · (6)

From (5) and (6) we have a
−2 = b

−3 = c
3 = k(say)

Therefore a = −2k; b = −3k; c = 3k.

Substituting in (2) we have d = 5k.

Therefore (1) becomes −2x− 3y + 3z + 5 = 0.

Problem 1.7.4. Find the equation of the plane passing through (2, 2, 1) and (9, 3, 6)

and perpendicular to the plane 2x+ 6y + 6z = 9.

Solution. Equation of the plane passing through (2, 2, 1) is

a(x− 2)b(y − 2) + c(z − 1) = 0 · · · (1)

where a, b, c are the d.r of the normal to the plane to determined.

Since (9, 3, 6) lies on this plane, we have 7a+ b+ 5c = 0 · · · (2)

Since the plane (1) is perpendicular to 2x+ 6y + 6z = 9,

we have 2a+ 6b+ 6c = 0 · · · (3)

Solving (2) and (3) we have a
−24 = b

−32 = c
40

Therefore a
3 = b

4 = c
−5 = k (say)

Therefore a = 3k, b = 4k, c = −5k.

Substituting in (1), we get 3(x− 2) + 4(y − 2) − 5(z − 1) = 0

Therefore 3x+ 4y − 5z − 9 = 0.

Problem 1.7.5. Find the equation of the plane throught (2, 3,−4) and (1,−1, 3) and

parallel to the x-axis.

Solution. Equation of the plane passing through (2, 3,−4) is

a(x− 2) + b(y − 3) + c(z + 4) = 0 · · · (1)
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where a, b, c are the d.r of the normal to the plane which is to be determined.

Since (1,−1, 3) also lies on the we have

−a− 4b+ 7c = 0 · · · (2)

Since the plane (1) is parallel to the x-axis its normal is perpendicular to the x-axis

whose d.r are 1,0,0.

∴ a.1 + b.0 + c.0 = 0 ⇒ a = 0 · · · (3)

From (2) and (3), we get a = 0, b = 7k, and c = 4k.

Substituting in (1) we get the equation of the required place as

7k(y − 3) + 4k(z + 4) = 0.

∴ 7y + 4z − 5 = 0 is the equation of the required plane.

Problem 1.7.6. Find the equation of the plane which passes through the point

(3,−2, 4) and is perpendicular to the line joining the points (2, 3, 5) and (1,−2, 3).

Solution. Since the plane is perpendicular to the line joining A(2, 3, 5) and

B(1,−2, 3), the line AB is normal to the plane.

The d.r of the normal AB are 1,5,2.

Therefore the equation of the required plane is 1(x− 2) + 5(y + 2) + 2(z − 4) = 0.

That is, x+ 5y + 2z − 1 = 0.

Problem 1.7.7. Find the equation of the plane which passes through the point

(1,−2, 1) and is perpendicular to each of the planes 3x+ y + z − 2 = 0 and

x− 2y + z + 4 = 0.

Solution. Let the equation of the plane be ax+ by + cz + d = 0 · · · (1)

It passes through (1,−2, 1). Hence we get

a− 2b+ c+ d = 0 · · · (2)

Since (1) is perpendicular to the planes 3x+ y + z − 2 = 0 and x− 2y + z + 4 = 0,

we have 3a+ b+ c = 0 · · · (3)

a− 2b+ c = 0 · · · (4)

Therefore a
3 = b

−2 = c
−7=(k say)

∴ a = 3k; b = 2k; c = −7k.

Substituting in (2), we get d = 0.
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Therefore the equation of the required plane is 3x− 2y − 7z = 0.

Problem 1.7.8. The foot of the perpendicular from the origin to a plane is

(2,−1, 2). Find the equation of the plane.

Solution. Let ax+ by + cz + d = 0 be the equation of the required plane. We know

a, b, c are d.r of the normal to the plane. Since P (2,−1, 2) is the foot of the

perpendicular from the origin O to the plane, OP is the normal to that plane. Hence

d.r of normal to the plane are 2,−1, 2.

Therefore the equation of the plane becomes 2x− y + 2z + d = 0.

Since (2,−1, 2) lies on it we have 4 + 1 + 4 + d = 0. Hence d = −9.

∴ 2x− y + 2z − 9 = 0 is the equation of the required plane.

Problem 1.7.9. Find the coordinate of the foot of the perpendicular drwan from the

origin to the plane 2x− 3y + z − 7 = 0.

Solution. Let P (x1, y1, z1) be the foot of the perpendicular from the origin.

Since P (x1, y1, z1) lies on the plane we have 2x1 − 3y1 + z1 − 7 = 0 · · · (1)

The direction ratios of OP are x1 − 0, y1 − 0, z1 − 0.

That is, d.r of OP are x1, y1, z1.

OP is normal to the given plane whose direction ratios are 2,−3, 1.

Therefore x1

2 = y1

−3 = z1

1 = k (say)

Therefore x1 = 2k ; y1 = −3k ; z1 = k

Substituting in (1), we get 4k + 9k + k = 7. Hence k = 1
2

∴ x1 = 1, y1 = −3
2
, z1 = 1

2
.

Therefore the foot of the perpendicular is
(

1,−3
2
, 1

2

)

.

Problem 1.7.10. A plane meets the coordinate axes at A,B,C such that the centroid

of the ∆ABC is the point (α, β, γ). Show that the equation of the plane is

x
α

+ y
β

+ z
γ

= 3.

Solution. Let the equation of the plane be ax+ by + cz + d = 0 · · · (1)

Since it meets the x-axis at A we get A =
(

−d
a
, 0, 0

)

.

Similarly, B =
(

0,−d
b
, 0

)

and C =
(

0, 0,−d
c

)

30



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

Centroid of ∆ABC is
(

− d
3a
,− d

3b
,− d

3c

)

But the centroid of ∆ABC is given to be (α, β, γ).

∴
−d
3a

= α;− d
3b

= β; and − d
3c

= γ.

∴ a = − d
3α

; b = − d
3β

and c = − d
3γ

.

Therefore the equation of the required plne (1) becomes

− d
3α
x− d

3β
y − d

3γ
z + d = 0. That is, x

α
+ y

β
+ z

γ
= 3

Problem 1.7.11. A moving plane passes through a fixed point (α, β, γ) and

intersects the coordinate axes at A,B,C. Show that the locus of the centroid of the

∆ABC is α
x

+ β
y

+ γ
z

= 3.

Solution. Let A be (a, 0, 0), B(0, 0, b) and C(0, 0, c).

Let (x1, y1, z1) be the centroid of the triangle ABC.

∴ x1 = a
3
; y1 = b

3
; z1 = c

3
· · · (1)

Now the equation of the plane ABC is x
a

+ y
b

+ z
c

= 1.

It passes through the fixed point (α, β, γ).

∴
α
a

+ β
b

+ γ
c

= 1. Hence α
3x1

+ β
3y1

+ γ
3z1

= 1 by (1).

That is α
x1

+ β
y1

+ γ
z1

= 3

Therefore the locus of (x1, y1, z1) is α
x

+ β
y

+ γ
z

= 3.

Problem 1.7.12. Find the equation of the plane through the intersection of the

planes 3x− y + 2z − 4 = 0, x+ y + z − 2 = 0 and passing through the point (2, 2, 1).

Solution. The required plane is 3x− y + 2z − 4 + a(x+ y + z − 2) = 0 where a is to

be determined.

Since (2, 2, 1) lies on it, we have 6 − 2 + 2 − 4 + a(2 + 2 + 1 − 2) = 0

∴ 2 + 3a = 0. Hence a = −2
3
.

Therefore the equation of the required plane is

3x− y + 2z − 4 − 2
3
(x+ y + z − 2) = 0

That is, 7x− 5y + 4z − 8 = 0.

Problem 1.7.13. Find the equation of the required plane through the intersection of

the planes x+ 3y − z = 4 and 2x+ 2y + 2z = 1 which is perpendicular to the plane

x+ y − 4z = 0.
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Solution. The equation of the required plane is of the form

x+ 3y − z − 4 + a(2x+ 2y + 2z − 1) = 1

∴ (1 + 2a)x+ (3 + 2a)y + (−1 + 2a)z − 4 − a = 0

Since it is perpendicular to x+ y − 4z = 0, we have

∴ −4a+ 8 = 0 Hence a = 2.

Therefore the equation of the required plane is

x+ 3y − z − 4 + 2(2x+ 2y + 2z − 1) = 0.

That is, 5x+ 7y + 3z − 6 = 0.

Problem 1.7.14. Find the equation of the plane which is the rotation by an angle α

of lx+my = 0 about its line of intersection with z = 0.

Solution. The required plane is the plane passing through the intersection of the

two planes lx+my = 0 and z = 0 and hence its equation is lx+my + λz = 0 for

some λ to be determined.

Given α is the angle between the planes lx+my = 0 and lx+my + λz = 0.

∴ cosα =
l2 +m2 + λ(0)√

l2 +m2
√
l2 +m2 + λ2

cos2 α(l2 +m2)(l2 +m2 + λ2) = (l2 +m2)2

[cos2 α(l2 +m2 + λ2)] = (l2 +m2)

λ2 cos2 α = (l2 +m2)(1 − cos2 α)

λ2 = (l2 +m2) tan2 α.

Hence λ = ±
√
l2 +m2 tanα

Therefore the equation of the required planes are lx+my ± [
√
l2 +m2 tanα] = 0.

Exercises 1.7.15. 1. Find the angle between the planes x− y + 2z − 9 = 0 and

2x+ y + z = 7.

2. Find the equation of the plane which passes through the point (2,-4,5) and is

parallel to the plane 4x+ 2y − 7z + 6 = 0.

3. Find the equation of the plane passing through the points (1,2,3) and (-4,1,-2)

and perpendicular to the plane 7x+ 2y − z + 3 = 0.
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Chapter 2

UNIT II

2.1 Lines

We obtain different forms of equation of a straight line in space.

1.Non-symmetric form. We know that two planes in general intersect in a line.

Hence a line in space can be represented by two linear equations.

π1 : a1x+ b1y + c1z + d1 = 0 and π2 : a2x+ b2y + c2z + d2 = 0.

2.Symmetric form. We can write the equations of a line if we know its direction

cosines and a point on it.

Let A(x1, y1, z1) be a given point on the line. Let l,m, n be the d.c of the line. Let

P (x, y, z) be any point on the line.

Therefore the direction ratios of AP are x− x1, y − y1, z − z1.

Since the d.c are l,m, n we have x−x1

l
= y−y1

m
= z−z1

n
= r · · · (1)

Hence x−x1

l
= y−y1

m
= z−z1

n
= r represents the equations of the given line.

Note 2.1.1. Any point on the line (1) is (x1 + lr, y1 +mr, z1 + nr).

Note 2.1.2. The equation of a line passing through (x1, y1, z1) and having direction

ratios (a, b, c) are also given by x−x1

a
= y−y1

b
= z−z1

c
= r

Note 2.1.3. The equations of a line given in non symmetric form can be converted

to symmetric form as follows.
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Let the equation of the two planes be π1 : a1x+ b1y + c1z + d1 = 0 and

π2 : a2x+ b2y + c2z + d2 = 0. Let π1 = 0 and π2 = 0 intersect along a line

L : π1 = π2 = 0. Let d.r of L be l,m, n.

Since the line L lies on both π1 = 0 and π2 = 0 the normals to the planes‘are

perpendicular. Hence a1l + b1m+ c1n = 0; a2l + b2m+ c2n = 0

∴
l

b1c2 − b2c1
=

m

c1a2 − c2a1

=
n

a1b2 − a2b1

Therefore the d.r of L are b1c2 − b2c1, c1a2 − c2a1, a1b2 − a2b1.

We now find a point A on L by considering the point where it meets the plane

z = 0 (xy-plane), (say). It is got from equations a1x+ b1y + d1 = 0 and

a2x+ b2y + d2 = 0.

∴
x

b1d2 − b2d1

=
y

d1a2 − d2a1

=
1

a1b2 − a2b1

∴ A is

(

b1d2 − b2d1

a1b2 − a2b1
,
d1a2 − d2a1

a1b2 − a2b1
, 0

)

Hence the equation of the line L in symmetric form is

x−
(

b1d2−b2d1
a1b2−a2b1

)

b1c2 − b2c1
=
y −

(

d1a2−d2a1

a1b2−a2b1

)

c1a2 − c2a1

=
z − 0

a1b2 − a2b1

Instead of finding the point where the given line meet the plane z = 0, we can also

find the point where L meets plane x = 0 or y = 0.

3.Two-points form. Equation of straight line can be obtained when two points on

the line are known.

If A(x1, y1, z1) and B(x2, y2, z2) are two points on a line, then the direction ratios of

the line are x2 − x1, y2 − y2, z2 − z1.

Therefore the equation of the line is x−x1

x2−x1

= y−y1
y2−y1 = z−z1

z2−z1 .

Problem 2.1.4. Find the direction cosines of the line 2x+1
3

= 4y−3
1

= 2z−3
0

.

Also find a point on it.

Solution. The given line can be rewritten as
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2(x+ 1

2
)

3
=

4(y− 3

4
)

1
=

2(z− 3

2
)

0
.

That is,
x+ 1

2

3/2
=

y− 3

4

1/4
=

z− 3

2

0
. Hence the direction ratios are

(

3
2
, 1

4
, 0

)

.

Therefore the direction cosines are
(

6√
37
, 1√

37
, 0

)

.

A point on the line is
(

−1
2
, 3

4
, 3

2

)

.

Problem 2.1.5. Find the value of k so that the lines x−1
−3

= y−2
2k

= z−3
2

and

x−1
3k

= y−5
1

= z−6
−5

may be perpendicular to each other.

Solution. The direction ratios of the lines are −3, 2k, 2 and 3k, 1,−5.

Since the lines are perpendicular, we have (−3)3k + (2k)1 + 2(−5) = 0

Hence k = −10/7.

Problem 2.1.6. Prove that the lines x+ y − z = 5; 9x− 5y + z = 4 and

6x− 8y + 4z = 3;x+ 8y − 6z + 7 = 0 are parallel.

Solution. Let a, b, c be the direction ratios of the line determined by the planes

x+ y − z = 5; 9x− 5y + z = 4.

Since the line is perpendicular to the normals of the above two planes, we have

a+ b− c = 0

9a− 5b+ c = 0.

∴
a
−4

= b
−10

= c
−14

That is,a
2

= b
5

= c
7
.

Therefore the direction ratios of the first lines are 2,5,7.

Similarly, we can prove that the direction ratios of the second lines are 2,5,7.

Hence the direction ratios of the two lines are proportional. Hence they are parallel.

Problem 2.1.7. Find the angle between the lines

x− 2y + z = 0 = x+ y − z − 3 and x+ 2y + z − 5 = 0 = 8x+ 12y + 5z.

Solution. The first line is the intersection of the two planes x− 2y + z = 0 and

x+ y − z − 3 = 0. Let a, b, c be direction ratios of the line. Since the line is

perpendicular to the normals of the above two planes

We have a− 2b+ = 0 · · · (1)

a+ b− c = 0 · · · (2)
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∴
a
1

= b
2

= c
3
.

Therefore the direction ratios of the first line are 1, 2, 3.

Let the direction ratios of the second line be a1, b1, c1.

∴ a1 + 2b1 + c1 = 0

8a1 + 12b1 + 5c1 = 0. Hence a1

−2
= b1

3
= c1

−4
.

Therefore the d.r of the second lines are −2, 3,−4.

Therefore the angle θ between the two lines is given by

cos θ =
aa1 + bb1 + cc1

√

(
∑

a2)
√

(
∑

a2
1)

=
−2 + 6 − 12√

14
√

29
=

−8√
14
√

29

∴ θ = cos−1

(

8√
406

)

. (acute angle)

Problem 2.1.8. Find in symmetrical form the equations of the line given by

x+ 5y − z = 7; 2x− 5y + 3z + 1 = 0.

Solution. The required line is the intersection of the planes

x+ 5y − z − 7 = 0 · · · (1)

2x− 5y + 3z + 1 = 0 · · · (2)

Let a, b, c be the direction ratios of the line. Since the line is perpendicular to the

normal of (1) and (2), we have

a+ 5b− c = 0 · · · (3)

2a− 5b+ 3c = 0 · · · (4)

∴
a
10

= b
−5

= c
−15

. Hence d.r are 2,−1,−3.

We now find one point on the line.

The line meets the xy-plane z = 0 at the point (x, y, 0) where (x, y)

satisfy the equations x+ 5y = 7 · · · (5)

2x− 5y = −1 · · · (6)

Solving (5) and (6), we get x = 2, y = 1.

Therefore a point on the line is (2, 1, 0).

Therefore the equations of the lines are x−2
2

= y−1
−1

= z
−3

.
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Problem 2.1.9. Find the coordinate of the point of intersection of the lines

x−1
2

= y−2
−3

= z+3
4

with the plane 2x+ 4y − z + 1 = 0.

Solution. Any point on the given line is P (1 + 2r, 2 − 3r,−3 + 4r).

If P lies on the plane 2x+ 4y − z + 1 = 0, then

2(1 + 2r) + 4(2 − 3r) − (−3 + 4r) + 1 = 0.

Therefore 4r − 12r − 4r + 2 + 8 + 3 + 1 = 0

Therefore −12r = −14. Hence r = 7/6.

Therefore P is
(

1 + 7
3
, 2 − 7

2
,−3 + 14

3

)

Therefore P is
(

10
3
, −3

2
, 5

3

)

Problem 2.1.10. Find the perpendicular distance of the point P (1, 1, 1) from the line

x−2
3

= y+3
2

= z
−1

. Also find the foot of the perpendicular.

Solution. Let A be the foot of the perpendicular form P (1, 1, 1) on the line.

Therefore AP is perpendicular to the line.

The direction ratios of the lines are 3, 2,−1.

The coordinates of A can be taken as (2 + 3r,−3 + 2r,−r)
Therefore the direction ratios of AP are 1 + 3r,−4 + 2r,−r − 1.

Since AP is perpendicular to the line we have

(1 + 3r)3 + (−4 + 2r)2 + (−r − 1)(−1) = 0.

Therefore 14r = 4. Hence r = 2
7

Therefore A is
(

2 + 6
7
,−3 + 4

7
,−2

7

)

=
(

20
7
, −17

7
,−2

7

)

.

Therefore the foot of the perpendicular is
(

20
7
, −17

7
,−2

7

)

.

∴ AP 2 =

(

20

7
− 1

)2

+

(−17

7
− 1

)2

+

(

−2

7
− 1

)

.

=

(

13

7

)2

+

(

−24

7

)2

+

(

−9

7

)2

=
118

7

∴ AP =

√

(

118

7

)

Problem 2.1.11. Find the point where the line x−2
2

= y−4
−3

= z+6
4

meets the plane

2x+ 4y − z − 2 = 0.
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Solution. Let x−2
2

= y−4
−3

= z+6
4

= r.

Therefore the coordinates of any point on the line are

(2 + 2r, 4 − 3r,−6 + 4r).

If this point lies on the plane 2x+ 4y − z − 2 = 0, we get

2(2 + 2r) + 4(4 − 3r) − (−6 + 4r) − 2 = 0.

That is, r = 2

Hence the coordinates of the required point are (6,−2, 2).

Problem 2.1.12. Find the foot of the perpendicular from the origin on the line

3x− y − z − 4 = 0 = 4x− 3y − 2z + 2.

Solution. Let L be the line of intersection of the given planes. Let a, b, c be the d.r

of the line L. Since L is perpendicular to the normal of both the planes we have

3a− b− c = 0; 4a− 3b− 2c = 0.

∴
a
−1

= b
2

= c
−5
.

Hence d.r of the L are -1,2,-5.

Let A be the point of intersection of L with xy-plane, z = 0.

The coordinates of A are obtained by solving 3x− y = 4 and 4x− 3y = −22.

Therefore A is (14/5, 22/5, 0).

Hence the equation of the line L is x−(14/5)
−1

= y−(22/5)
2

= z
−5

Any point P on the line L is P (−r + 14/5, 2r + 22/5,−5r)

The d.r of OP are −r + 14/5, 2r + 22/5,−5r.

Suppose P is the foot of the perpendicular from O to the line L.

Then, OP is perpendicular is to L gives

−1(−r + 14/5) + 2(2r + 22/5) − 5(−5r) = 0.

∴ 30r = −6. Hence r = −1/5

Therefore P is (3, 4, 1)

Problem 2.1.13. Find the image of the point (2, 3, 4) under the reflection in the

plane x− 2y + 5z = 6.

Solution. Let P (2, 3, 4) be the given point and let P ′ be its image under the

reflection in the plane x− 2y + 5z = 6.
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The d.r of the normal to the plane are 1, -2, 5.

Therefore the d.r of PP ′ are also 1, -2, 5.

Hence the equations of the line are x−2
1

= y−3
−2

= z−4
5

Therefore P ′ is of the form (2 + r, 3 − 2r, 4 + 5r).

Mid point of PP ′ is Q(2 + r/2, 3 − r, 4 + 5r/2).

Since Q lies on the plane (1) we have (2 + r/2) − 2(3 − r) + 5(4 + 5r/2) = 6

∴ 2 + r/2 − 6 + 2r + 20 + 25r/2 = 6

Therefore 15r = −10. Hence r = −2/3.

Therefore P ′ is (2 − 2/3, 3 + 4/3, 4 − 10/3).

That is, P ′ is
(

4
3
, 13

3
, 2

3

)

.

Problem 2.1.14. Find the image of the point (1, 3, 4) under the reflection under the

plane 2x-y+z+3=0. Hence prove that the image of the line x−1
1

= y−3
−2

= z−4
−3

is

x+3
1

= y−5
−5

= z−2
−10

.

Solution. Let P (1, 3, 4) be the given point and P ′ be its image in the plane

2x− y + z + 3 = 0 · · · (1)

The direction ratios of the normal to the plane 2,-1,1.

Therefore the direction ratios of PP ′ are also 2,-1,1.

Hence the equations of the line PP ′ are x−1
2

= y−3
−1

= z−4
1

The coordinates of P ′ are (1 + 2r, 3 − r, 4 + r) for some r.

Mid point of PP ′ is Q
(

1+2r+1
2

, 3−4+3
3

, 4+r+4
2

)

That is, Q is (r + 1, 3 − r/2, 4 + r/2).

This point Q lies on the plane 2x− y + z + 3 = 0

∴ 2(r + 1) − (3 − r/2) + (4 + r/2) + 3 = 0

∴ 3r = −6. Hence r = −2.

Therefore P is (1 − 4, 3 + 2, 4 − 2) That is, P ′ is (−3, 5, 2).

Therefore the image of (1, 3, 4) under reflection is (−3, 5, 2)

We now find the point where the line x−1
1

= y−3
−2

= z−4
−3

· · · (2)

meets the plane 2x− y + z + 3 = 0.

Any point on the line (2) is R(r + 1, 3 − 2r, 4 − 3r) and it lies in the plane (1).

Hence 2(1 + 2r) − (3 − 2r) + (4 − 3r) + 3 = 0.

Therefore r = −6. Hence R is (−5, 15, 22).
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Since R lies in the plane (1) the image of R in the plane (1) is itself.

Therefore the line RP ′ is the image of the line (2) and its equation are

x+3
−3+5

= y−5
5−15

= z−2
2−22

.

That is, x+3
2

= y−5
−10

= z−2
−20

That is, x+3
1

= y−5
−5

= z−2
−10

Exercises 2.1.15. 1. Find the equation of the straight line joining the points

(2, 5, 8) and (−1, 6, 3).

2. Find the perpendicular distance from P (3, 9,−1) to the line x+8
−8

= y−31
1

= z−13
5
.

3. Put in the symmetrical form the lines

(i) 3x− 2y + z − 1 = 0 = 5x+ 4y − 6z − 2.

(ii) 4x+ 4y − 5z − 12 = 0 = 8x+ 12y − 13z − 32.

2.2 PLANE AND A STRAIGHT LINE

Theorem 2.2.1. Let L : x−x1

l
= y−y1

m
= z−z1

n
· · · (1)

be a line and π : ax+ by + cz + d = 0 · · · (2)
be a plane. The condition that

(i) the line L be parallel to the plane π is ax1 + by1 + cz1 + d 6= 0 and al+ bm+ cn = 0;

(ii) the line L to lie in the plane π is ax1 + by1 + cz1 + d = 0 and al + bm+ cn = 0.

Proof. [i] The coordinates of any point on the line (1) are (x1 + lr, y1 +mr, z1 + nr).

Suppose this point lies on the plane (2), then

a(x1 + lr) + b(y1 +mr) + c(z1 + nr) + d = 0

That is, r(al + bm+ cn) + (ax1 + by1 + cz1 + d) = 0 · · · (3)

If the line is parallel to plane, no point of the line lies on the plane.

Therefore no value of r satisfies(3). Hence al + bm+ cn = 0 and

ax1 + by1 + cz1 + d 6= 0.

[ii] The line (1) will lie in the plane (2) if every point on the line lies in the plane.

Hence (3) must be satisfied by all values of r.

Therefore al + bm+ cn = 0 and ax1 + by1 + cz1 + d = 0. 2
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Example 2.2.2. Find the equations of the orthogonal projection of the line

x−2
4

= y−1
2

= z−4
3

on to the plane 8x+ 2y + 9z − 1 = 0.

The required orthogonal projection lies in the plane drawn through the given line

perpendicular to the given plane.

The equation of any plane containing the given line is

A(x− 2) +B(y − 1) + C(z − 4) = 0 · · · (1)

subject to the condition

4A+ 2B + 3C = 0 · · · (2)

Plane (1) is perpendicular to the plane 8x+ 2y + 9z − 1 = 0

Therefore 8A+ 2B + 9C = 0 · · · (3)

From (2) and (3), we get A
12

= B
−12

= C
−8
. That is, A

3
= B

−3
= C

−2

Substituting the value of A,B,C in (1), we get the equation of the plane(1) as

3(x− 2) − 3(y − 1) − 2(z − 4) = 0

That is, 3x− 3y − 2z + 5 = 0.

2.3 Coplanar Lines

Theorem 2.3.1. The condition for two lines x−x1

l1
= y−y1

m1

= z−z1
n1

· · · (1)
and x−x2

l2
= y−y2

m2

= z−z2
n2

· · · (2)

to be coplanar is

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Proof. Two coplanar lines must be either parallel or intersecting.

The lines (1) and (2) are parallel if l1
l2

= m1

m2

= n1

n2

.

Suppose the lines are not parallel.

Therefore Let the lines intersect at P (say).

Therefore the coordinates of any point on the line (1) are

(x1 + l1r, y1 +m1r, z1 + n1r).

The coordinates of any point on the line (2) are (x2 + l2r1, y2 +m2r1, z2 + n2r1)

Since P is a common point for (1) and (2), we have
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x1 + l1r = x2 + l2r1; y1 +m1r = y2 +m2r1; z1 + n1r = z2 + n2r1 for some values of r

and r1.

∴ (x1 − x2) + l1r − l2r1 = 0

(y1 − y2) +m1r −m2r1 = 0

(z1 − z2) + n1r − n2r1 = 0

Eliminating r and r1 form the above three equations, we get
∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 − x2 l1 l2

y1 − y2 m1 m2

z1 − z2 n1 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

That is,

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Further the above conditions is satisfied even if l1
l2

= m1

m2

= n1

n2

and hence it is the

required condition for the given lines to be coplanar. Hence the theorem. 2

Note 2.3.2. If the line given by (1) lies in the plane

ax+ by + cz + d = 0 · · · (1)

then, we have ax1 + by1 + cz1 + d = 0 · · · (2)

and al + bm+ cn = 0

From(1) and (2), the equation of the plane of the plane containing the line can be

written as a(x− x1) + b(y − y1) + c(z − z1) = 0 together with the condition

al + bm+ cn = 0.

Theorem 2.3.3. The angle between the line

x−x1

l
= y−y1

m
= z−z1

n
and the plane ax+ by + cz = 0 is

given by sin θ = al+bm+cn√
(a2+b2+c2)

√
(l2+m2+n2)

.

Proof. Let θ be the angle between the given plane and the straight line.

Therefore 90 − θ is the angle between the line and the normal to plane.

The direction ratios of the normal to the plane are a, b, c and the direction ratios of

the line are l,m, n.

Therefore cos(90 − θ) = al+bm+cn√
(a2+b2+c2)

√
(l2+m2+n2)

.

Hence the theorem. 2
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Corollary 2.3.4. The line x−x1

l
= y−y1

m
= z−z1

n
is parallel to the plane

ax+ by + cz + d = 0 if and only if al + bm+ cn = 0.

Theorem 2.3.5. The equation of the plane containing two lines

x−x1

l1
= y−y1

m1

= z−z1
n1

· · · (1)
and x−x2

l2
= y−y2

m2

= z−z2
n2

· · · (2)

is

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Proof. The equation of the plane containing the line (1) is

a(x− x1) + b(y − y1) + c(z − z1) = 0 · · · (A)

subject to al1 + bm1 + cn1 = 0 · · · (B)

Also the line (2) is perpendicular to normal to the plane (A).

∴ al2 + bm2 + cn2 = 0 · · · (C)

Eliminating a, b, c from (A),(B) and(C), we get the required equation. 2

Theorem 2.3.6. The length of the perpendicular from a point P (x1, y1, z1) to the line

x−α
l

= y−β
m

= z−γ
n

· · · (1)
is

[

(x1 − α)2 + (y1 − β)2 + (z1 − γ)2 − [l(x1−α)+m(y1−β)+n(z1−γ)2
l2+m2+n2

]1/2

Proof. Let PL be the perpendicular from P to the line (1).

Then L is (α+ lr, β +mr, γ + nr) for some r.

Therefore d.r of PL are x1 − α− lr, y1 − β −mr, z1 − γ − nr.

Since PL is perpendicular to the line (1), we have

l(x1 − α− lr) +m(y1 − β −mr) + n(z1 − γ − nr) = 0

∴ l(x1 − α) +m(y1 − β) + n(z1 − γ) = r(l2 +m2 + n2) · · · (2)
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Therefore r =
l(x1−α)+m(y1−β)+n(z1−γ)

(l2+m2+n2)

Now PL2 = (x1 − α− lr)2 + (y1 − β −mr)2 + (z1 − γ − nr)2

= (x1 − α)2 + (y1 − β)2 + (z1 − γ)2 − 2r[l(x1 − α) +m(y1 − β) +

n(z1 − γ)] + r2(l2 +m2 + n2)

= (x1 − α)2 + (y1 − β)2 + (z1 − γ)2 − 2r2(l2 +m2 + n2) +

r2(l2 +m2 + n2)

= (x1 − α)2 + (y1 − β)2 + (z1 − γ)2 − r2(l2 +m2 + n2)

Hence the result. 2

2.4 Skew lines

Definition 2.4.1. Two straight lines in space which are not coplanar are called skew

lines.

Note 2.4.2. There is only one straight line which is perpendicular to both the skew

lines.

Definition 2.4.3. The shortest distance (abbreviated by S.D.) between two skew lines

is the length of the common perpendicular drawn to the lines.

Theorem 2.4.4. Shortest distance between the skew lines

L1 :
x− x1

l1
=
y − y1

m1

=
z − z1

n1

· · · (1)

and L2 :
x− x2

l2
=
y − y2

m2

=
z − z2

n2

· · · (2)
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is given by S.D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣√
∑

(l1m2−l2m1)2

Proof. Let A(x1, y1, z1) be a point on the line L1 and B(x2, y2, z2) be a point on L2.

Consider a plane π containing the line L1 and parallel to L2.

Then every point on L2 will be equidistant from this plane.

Hence the shortest distance is the perpendicular distance of any point on L2 to the

plane π.

C
A

L1

D B

π

L2

Therefore the shortest distance is CD (refer figure). The equation of the plane π can

be taken as

a(x− x1) + b(y − y1) + c(z − z1) = 0 · · · (3)

subject to al1 + bm1 + cn1 = 0 · · · (4)

Since the plane is parallel to L2 we have al2 + bm2 + cn2 = 0 · · · (5)

From (4)and(5) we get a
m1n2−m2n1

= b
n1l2−n2l1

= c
l1m2−l2m1

.

Therefore the equation of the plane π is

(m1n2 −m2n1)(x− x1) + (n1l2 − n2l1)(y − y1) + (l1m2 − l2m1)(z − z1) = 0 · · · (6)

Therefore the shortest distance S.D = the perpendicular distance from B(x2, y2, z2)

to the plane(6).

∴ S.D =
(m1n2 −m2n1)(x2 − x1) + (n1l2 − n2l1)(y2 − y1) + (l1m2 − l2m1)(z2 − z1)

√
∑

(m1n2 −m2n1)2

Hence the shortest distance can be expressed in the form as given in the theorem.

Now, we find the equation of the line of shortest distance CD.

CD is the intersection of the planes ACD and BDC.

Let l,m, n be the direction ratios of CD.
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Therefore the equation of the plane ACD is

π1 :

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1

l1 m1 n1

l m n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 · · · (1)

The equation of the plane BDC is

π2 :

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1

l2 m2 n2

l m n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 · · · (2)

Since CD is perpendicular to L1 and L2, we have

ll1 +mm1 + nn1 = 0 and ll2 +mm2 + nn2 = 0

Hence l
m1n2−m2n1

= m
n1l2−n2l1

= n
l1m2−l2m1

· · · (3)

Therefore the equations of the shortest distance CD are given by π1 = 0 and π2 = 0

where l,m, n are given by (3). 2

Note 2.4.5. If the shortest distance between the two lines L1 and L2 is zero then the

lines are coplanar.

2.4.1 Solved problems

Problem 2.4.6. Find the equation of the plane containing the point (−1, 7, 2) and

the line x+3
2

= y+2
3

= z−2
−2

· · · (1)

Solution. The equation of the plane containing the line (1) is

a(x+ 3) + b(y + 2) + c(z − 2) = 0 · · · (2)

subject to 2a+ 3b− 2c = 0 · · · (3)

Since the plane passes through (−1, 7, 2), we have from (2)

2a+ 9b = 0 · · · (4)

From (3) and (4), we have a
18

= b
−4

= a
24

Therefore a = 18k, b = −4k, c = 24k;

Substituting in (2), we get the equation of the plane as 9x− 2y + 12z = 1.
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Problem 2.4.7. Find the equation of the plane which contains the two parallel lines

x− 1

1
=
y − 2

2
=
z − 3

3
· · · (1)

x− 3

1
=
y + 2

2
=
z + 4

3
· · · (2)

Solution. The equation of the plane containing the line (1) is given by

a(x− 1) + b(y − 2) + c(z − 3) = 0 · · · (3)

subject to a+ 2b+ 3c = 0 · · · (4)

Since the line (2) lies on the plane (3), the point (3,−2,−4) lies on it.

Therefore from (3), we have 2a− 4b− 7c = 0 · · · (5)

From (4) and (5), we have a
−2

= b
13

= c
−8
.

Therefore a = −2k, b = 13k, c = −8k.

Therefore the equation of the plane is −2x+ 13y − 8z = 0.

Problem 2.4.8. Prove that the lines x
l

= y
m

= z
n
; x
l1

= y
m1

= z
n1

; x
l2

= y
m2

= z
n2

are

coplanar if

∣

∣

∣

∣

∣

∣

∣

∣

∣

l m n

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Solution. Obviously, the three lines intersect at (0, 0, 0). Hence they determine a

plane.

Now, the equation of the plane containing these two lines is
∣

∣

∣

∣

∣

∣

∣

∣

∣

x y z

l m n

l1 m1 n1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

That is, (mn1 −m1n)x− (ln1 − l1n)y + (lm1 − l1m)z = 0 · · · (1)

Suppose the three lines are coplanar. Then the third line also lies on (1).

Therefore the normal to the plane (1) is perpendicular to the third line.

Therefore l2(mn1 −m1n) −m2(ln1 − l1n) + n2(lm1 − l1m) = 0

That is,

∣

∣

∣

∣

∣

∣

∣

∣

∣

l2 m2 n2

l m n

l1 m1 n1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0
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That is,

∣

∣

∣

∣

∣

∣

∣

∣

∣

l m n

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Problem 2.4.9. Show that the lines x−1
1

= y−4
2

= z−5
2

and x−5
2

= y−8
3

= z−7
2

are

coplanar and find the equation of the plane containing them.

Solution. Here (x1, y1, z1) = (2, 4, 5) and (x2, y2, z2) = (5, 8, 7).

We know that the lines are coplanar if
∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 − x2 y1 − y2 z1 − z2

l m n

l1 m1 n1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Now,

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 − x2 y1 − y2 z1 − z2

l m n

l1 m1 n1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

−3 −4 −2

1 2 2

2 3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (verify)

Equation of the plane containing the line is

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− 2 y − 4 z − 5

1 2 2

2 3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

That is, 2x− 2y + z − 1 = 0

Problem 2.4.10. Prove that the lines

x− 3

2
=
y − 2

−5
=
z − 1

3
· · · (1)

and
x− 1

−4
= y+2 =

z − 6

2
· · · (2)

are coplanar. Find the point of intersection. Also find the equation of the plane

determined by the lines.

Solution. Here the condition l
l1

= m
m1

= n
n1

is not satisfied. Hence the lines are not

parallel. Hence if the lines are to be coplanar they must intersect.

The coordinates of any point on the line (1) are

P (2r + 3,−5r + 2, 3r + 1) · · · (3)

The coordinates of any point on the line (2) are
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Q(−4r1 + 1, r1 − 2, 2r1 + 6) · · · (4)

The two lines intersect if 2r + 3 = −4r1 + 1;

−5r + 2 = r1 − 2 and 3r + 1 = 2r1 + 6 for some values of r, r1.

Therefore 2r + 4r1 = −2 · · · (5)

−5r − r1 = −4 · · · (6)

3r − 2r1 = 5 · · · (7)

Solving (5) and (6), we get r = 1 and r1 = −1.

These values satisfy the equation (7) also.

Hence the two lines intersect. The point of intersection P is (5,−3, 4) (from (3)).

The equation of the plane containing the two lines (1) and (2) is given by
∣

∣

∣

∣

∣

∣

∣

∣

∣

x− 3 y − 2 z − 1

2 −5 3

−4 1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

That is, 13x+ 16y + 18z − 89 = 0.

Problem 2.4.11. Find the shortest distance and the equation of the line of shortest

distance between the straight lines x+3
−4

= y−6
6

= z
2

and x+2
−4

= y
1

= z−7
1

Solution.

S.D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
∑

(m1n2 −m2n1)2

Here (x1, y1, z1) = (−3, 6, 0);(x2, y2, z2) = (−2, 0, 7)

(l1,m1, n1) = (−4, 6, 2) and (l2,m2, n2) = (−4, 1, 1).

Now,

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −6 7

−4 6 2

−4 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 168

∑

(m1n2 −m2n1)
2 = (m1n2 −m2n1)

2 + (n1l2 − n2l1)
2 + (l1m2 − l2m1)

2

= (6 − 2)2 + (−8 + 4)2 + (−4 + 24)2

= 16 + 16 + 400+ = 432

∴ S.D = 168√
432

= 168
12

√
3

= 14√
3

The equation of the line of shortest distance is
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∣

∣

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1

l1 m1 n1

l m n

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1

l2 m2 n2

l m n

∣

∣

∣

∣

∣

∣

∣

∣

∣

where
l

m1n2 −m2n1

=
m

n1l2 − n2l1
=

n

l1m2 − l2m1

∴
l

4
=

m

−4
=

n

20

That is,
l

1
=

m

−1
=
n

5

Hence the equation of shortest lines is
∣

∣

∣

∣

∣

∣

∣

∣

∣

x+ 3 y − 6 z−
−4 6 2

1 −1 5

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− 2 y z − 7

−4 1 1

1 −1 5

∣

∣

∣

∣

∣

∣

∣

∣

∣

Therefore 16x+ 11y − z − 18 = 0 = 2x+ 7y + z − 3 (verify)

Problem 2.4.12. Find the shortest distance between the lines L1 and L2 if

L1 : x−3
3

= y−6
−4

= z − 9

L2 : 2x− 2y + z − 3 = 0 = 2x− y + 2z − 9.

Solution. Let π be the plane through L2 and parallel to L1. Then the shortest

distance between L1 and L2 is the perpendicular distance from (5, 6, 9) to the plane

π. The equation of π is of the form.

2x− 2y + z − 3 + λ(2x− y + 2z − 9) = 0

That is, (2 + 2λ)x+ (−2 − λ)y + (1 + 2λ)z − (3 + 9λ) = 0 · · · (1)

Since π is parallel to L1, the normal to π is perpendicular to L1.

Therefore 3(2 + 2λ) − 4(−2 − λ) + (1 + 2λ) = 0. Hence λ=-5
4

Therefore from (1), the equation of π is 2x+ 3y + 6z = 33 = 0.

∴ S.D =
2(5) + 3(6) + 6(9) − 33

√

(22 + 32 + 62)
= 7

Problem 2.4.13. Find the shortest distance between the lines
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2x− 2y + 3z − 12 = 0 = 2x+ 2y + z · · · (1)
2x− z = 05x− 2y + 9 · · · (2)

Solution. The equation of a plane containing the line (1) is

2x− 2y + 3z − 12 + λ(2x+ 2y + z) = 0

That is, (2 + 2λ)x+ (−2 + 2λ)y + (3 + λ)z − 12 = 0 · · · (3)

The equation of a plane containing the line (2) is

(2x-z)+µ(5x− 2y + 9) = 0

We find the values of λ and µ such that the planes (3) and (4) are parallel. We have

2+2λ
2+5µ

= −2+2λ
−2µ

= 3+λ
−1

· · · (5)

Taking the first two ratios in (5), we get

2λ− 3µ+ 7λµ− 2 = 0 · · · (6)

Taking the second and third ratios in [5], we get

λ− 3µ+ λµ+ 1 = 0 · · · (7)

From (7), we get λ = 1+3µ
1−µ · · · (8)

Substituting (8) in (6) we get 2
(

1+3µ
1−µ

)

− 3µ+ 7
(

1+3µ
1−µ

)

µ− 2 = 0

That is, 2 + 6µ− 3µ+ 3µ2 + 7µ+ 21µ2 − 2 + 2µ = 0

That is, 24µ2 + 12µ = 0. Hence 12µ(2µ+ 1) = 0

Therefore µ = 0 or µ = −1
2

Hence from (8), we get Λ = 1 or λ = −1
3

When λ = 1,µ = 0 does not satisfy (5).

Hence we take λ = −1
3

and µ = −1
2

Hence the planes (3) and (4) become

x− 2y + 2z − 9 = 0 · · · (9)

x− 2y + 2z + 9 = 0 · · · (10)

The point of intersection of (9) with the z-axis is (0, 0, 9/2)

Therefore the required shortest distance is the perpendicular distance from (0, 0, 9/2)

to the plane (10) = ±
(

18√
[12+(−2)2+22]

)

= 6

Problem 2.4.14. Find the shortest distance and the equation of the line of shortest

distance in symmetrical form of the lines

x−3
3

= y+9
−16

= z−10
7

and x−15
3

= y−29
8

= z−5
−5

.
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Solution. Coordinates of any point P on the first line are (3r+8,−16r− 9, 7r+10).

Coordinates of any point q on the second line are (3s+ 15, 8s+ 29,−5s+ 5).

Let PQ be the shortes distance.

Direction ratios of PQ are (3s− 3r + 7, 8s+ 16r + 38) + 7(−5s− 7r − 5) = 0

and 3(3s− 3r + 7) − 16(8s+ 16r + 38) − 5(−5s− 7r − 5) = 0.

That is, 77s+ 157r = −311 · · · (1)

and 7s+ 11r = −25 · · · (2)

Solving (1) and (2) we get r=-1 and s=-2.

Therefore P is (5,7,3) and Q is (9,13,15).

∴ PQ =
√

(9 − 5)2 + (13 − 7)2 + (15 − 3)2 =
√

16 + 36 + 144
√

196 = 14.

The equations of the line of shortest distance are

x−5
5−9 = y−7

7−13 = z−3
3−15

That is, x−5
−4 = y−7

−6 = z−3
−12

That is, x−5
2 = y−7

3 = z−3
6

Problem 2.4.15. Find the distance of the point (3, 4, 5) from the point of

intersection of x−3
1

= y−4
2

= z−5
2

with the plane x+ y + z = 2.

Solution. We note the point A(2, 3, 5) is a point on the line.

Any point on the line is P (r + 3, 2r + 4, 2r + 5).

If P is the point of intersection of the line with the plane, then P lies on the plane.

∴ (r + 3) + (2r + 4) + (2r + 5) = 2

∴ 5r = −10. Hence r = −2.

Therefore P is (1, 0, 1).

Hence the required distance AP =
√

(3 − 1)2 + (4 − 0)2 + (5 − 1)2

=
√

36

=6

Problem 2.4.16. Find the shortest distance between the lines x−1
2

= y−2
3

= z−3
4

and

x−2
3

= y−3
4

= z−4
5

.
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Solution.

S.D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

√
∑

(l1m2 − l2m1)2

Here (x1, y1, z1) = (1, 2, 3) and (x2, y2, z2) = (2, 3, 4)

Now,

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1 z2 − z1

l1 m1 n1

l2 m2 n2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

2 3 4

3 4 5

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Hence the lines are coplanar.

Problem 2.4.17. Find in symmetrical form, the equation of the orthogonal

projection of the line x−1
2

= y−2
3

= z−4
4

· · · (1)
on the plane 3x+ 4y + 5z = 0. · · · (2)

Solution. The orthogonal projection of the line (1) is the intersection of plane (2)

and plane containing the line (1) perpendicular to the plane (2).

The equation of the plane containing the line (1) is

a(x− 1) + b(y − 2) + C(z − 4) = 0 · · · (3)

subject to 2a+ 3b+ 4c = 0 · · · (4)

The plane (3) is perpendicular to (2). Hence 3a+ 4b+ 5c = 0.

From (4) and (5), we have a
−1

= b
2

= c
−1

= k (say)

a = −k; b = 2k; c = −k.
Therefore the equation of the plane (3) is x− 2y + z − 1 = 0. · · · (6)

Therefore the required line is the intersection of the plane (2) and (6).

Now, we get the equations of the line in the symmetrical form.

Let α, β, γ be the direction ratios of the line.

∴ 3α+ 4β + 5γ = 0 and α− 2β + γ = 0

∴
α
14

= β
2

= γ
−10

Hence the direction ratios are 7, 1,−5.

The line meets the xy plane a = 0. Hence x− 2y = 1 and 3x+ 4y = 0.

Solving the two equations, we get the point as (2
5
, −3

10
, 0).

Therefore the equations of the line are
x− 2

5

7
=

y+ 3

10

1
= z

−5
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Problem 2.4.18. Find the condition that the lines

a1x+ b1y + c1z + d1 = 0 = a2x+ b2y + c2z + d2 · · · (1)
and a3x+ b3y + c3z + d3 = 0 = a4x+ b4y + c4z + d4 · · · (2)
may be coplanar.

Solution. Let the lines represented by the equations (1) and (2) be coplanar. Then

(1) and (2) will have a common point say (x1, y1, z1).

Hence it lies on all the four planes which determine the two lines.

∴ a1x1 + b1y1 + c1z1 + d1 = 0

a2x1 + b2y1 + c2z1 + d2 = 0

a3x1 + b3y1 + c3z1 + d3 = 0

a4x1 + b4y1 + c4z1 + d4 = 0

Eliminating x1, y1, z1 from the above four equations, we get the required conditions as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Exercises 2.4.19. 1. Prove that the following lines are coplanar and find the

equation of the plane in which they lie.

(i) x−3
2

= y−2
−5

= z−1
3

; x−1
−4

= y+2
1

= z−6
2

;

(ii) x+ 1 = y+2
2

= z − 1; x− 2y + 2z − 3 = 0 = x− 4y + 5z − 8.

2. Show that the lines x−8
3

= y+9
−16

= z−10
7

and x−15
3

= y−29
8

= z−5
−5

are skew lines.

3. Find the shortest distance and the equation of the shortest distance between

the following skew lines

x−1
2

= y−2
3

= z−3
4

; x−2
3

= y−4
4

= z−5
5

.
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2.5 Sphere

Definition 2.5.1. A sphere is the locus of a point in space which moves such that

its distance from a fixed point is constant. The fixed point is called the centre of the

sphere and the fixed distance is called the radius of the sphere.

We now proceed to find several forms of the equation of a sphere.

1. Centre radius form

Theorem 2.5.2. The equation of the sphere with centre C(a, b, c) and radius r is

given by (x− a)2 + (y − b)2 + (z − c)2 = r2.

Proof. Let P (x0, y0, z0) be any point on the sphere.

Hence CP 2 = r2

Therefore (x0 − a)2 + (y0 − b)2 + (z0 − c)2 = r2.

Therefore the locus of (x0, y0, z0) is (x− a)2 + (y − b)2 + (z − c)2 = r2. 2

Corollary 2.5.3. The equation of the sphere with centre origin and radius r is

x2 + y2 + z2 = r2.

2. General form of a sphere

Theorem 2.5.4. The equation x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 represents a

sphere with centre (−u,−v,−w) and radius
√
u2 + v2 + w2 − d.

Proof. The given equation can be written as

(x+ u)2 + (y + v)2 + (z + w)2 = u2 + v2 + w2 − d.

This represents the locus of a point (x, y, z) which moves such that its distance from

the point C(−u,−v,−w) is equal to the constant
√
u2 + v2 + w2 − d

Hence the given equation represents a sphere with centre (−u,−v,−w) and radius
√
u2 + v2 + w2 − d 2

Note 2.5.5. The eqution ax2 + ay2 + az2 + 2ux+ 2vy + 2wz + d = 0 represents a

sphere with a centre
(

−u
a
,− v

a
,−w

a

)

and radius
√

(

u2

a2 + v2

a2 + w2

a2 − d
a

)

.
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Note 2.5.6. The equation x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 can be denoted as

S = 0 where S ≡ x2 + y2 + z2 + 2ux+ 2vy + 2wz + d.

3. Diameter form

Theorem 2.5.7. The equation of the sphere described on the line joining the points

A(x1, y1, z1) and (x2, y2, z2) as diameter is given by

(x− x1)(x− x2) + (y − y1)(y − y2) + (z − z1)(z − z2) = 0.

Proof. Let P (x, y) be any point on the sphere with AB as diameter.

Therefore the direction ratios of AP are x− x1, y − y1, z − z1 and the direction ratios

of BP are x− x2, y − y2, z − z2.

Consider the circle passing through A,B and P . This circle also has AB as diameter

and hence ∠APB = 900. [i.e] AP is perpendicular to BP .

Therefore (x− x1)(x− x2) + (y − y1)(y − y2) + (z − z1)(z − z2)=0

Since this is true for any point (x, y, z) on the sphere it represents the equation of the

required sphere. 2

2.6 Tangent Plane

Definition 2.6.1. The straight line joining two points P and Q on a surface is called

a chord of the surface. When Q moves along the surface and ultimately coincides with

P the limiting position of PQ touches the surface at P and is called a tangent line of

the surface.

In the case of a sphere with centre C there are many tangent lines at a point P on it,

all of them being perpendicular to the radius CP . All these tangents lie on the plane

through P perpendicular to CP . This plane is called the tangent plane of the sphere

at P .

Theorem 2.6.2. The equation of the tangent plane to the sphere

x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 at P (x1, y1, z1) is

xx1 + yy1 + zz1 + u(x+ x1) + v(y + y1) + w(z + z1) + d = 0.
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Proof. The centre of the given sphere is C(−u,−v,−w). The tangent plane to the

sphere at P (x1, y1, z1) passes through P and has CP as its normal.

The direction ratios of CP are x1 + u, y1 + v, z1 + w.

Hence the equation of the tangent plane at P is

(x1 + u)(x− x1) + (y1 + v)(y − y1) + (z1 + w)(z − z1) = 0.

That is, xx1 + yy1 + zz1 + ux+ vy + wz = x2
1 + y2

1 + z2
1 + ux1 + vy1 + wz1

That is, xx1 + yy1 + zz1 + u(x+ x1) + v(y + y1) + w(z + z1) + d

= x2
1 + y2

1 + z2
1 + 2ux1 + 2vy1 + 2wz1 + d

= 0 [since the (x1, y1, z1) lies on the sphere]

Hence the result. 2

2.6.1 Angle of intersection of two spheres

The angle of intersection of two spheres at a common point is the angle between the

tangent planes to them at that point. Since the angle between the two tangent planes

at the common point is same as the angle between their normals at that point we

note that the angle between the two sphere is same as the angle between the radii of

the two spheres at the common point. Also we note that the angle of intersection at

every common point of the sphere is the same.

Suppose the two spheres S = 0 and S1=0 with centre A and B and radii r and r1,

respectively, cut orthogonally then, AB2 = AP 2 +BP 2, where P is the common

Point and AP = r and BP = r1.

Theorem 2.6.3. The condition for two spheres

S = x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 and

S1 = x2 + y2 + z2 + 2u1x+ 2v1y + 2w1z + d1 = 0 to cut orthogonally is

2uu1 + 2vv1 + 2ww1 = d+ d1.

Proof. The centre of S = 0 is A(−u,−v,−w) and radius

r =
√

(u2 + v2 + w2 − d).

The centre of S = 0 is B(−u1,−v1,−w1) and radius

r1 =
√

(u2
1 + v2

1 + w2
1 − d1).
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Let P be a common point.

The two spheres cut orthogonally if r2 + r2
1 = AB2.

∴ (u2 + v2 + w2 − d) + (u2
1 + v2

1 + w2
1 − d1) = (u1 − u)2 + (v1 − v)2 + (w1 − w)2

= u2 + u2
1 − 2uu1 + v2 + v2

1 − 2vv1 +

w2 + w2
1 − 2ww1

∴ 2uu1 + 2vv1 + 2ww1 = d+ d1 2

2.7 Plane Section

Theorem 2.7.1. A plane section of a sphere is a circle.

Proof. Let a plane π cut a sphere of radius r and Centre C.

P

C

N

Let P be a point on the plane section. We claim that the locus of P is a circle.

Let N be the foot of the perpendicular drawn from C to the plane π.

Therefore NP=
√
CP 2 − CN2 =

√
r2 − CN2 which is a constant. Hence the locus of

P is a circle with centre N and radius
√
r2 − CN2. 2

Note 2.7.2. The section of a sphere by a plane through its centre is known as a great

circle and the centre and radius of a great circle are the same as that of the sphere.

Note 2.7.3. The curve of intersection of a sphere by a plane is a circle. Hence a

circle can be represented by two equations one being the equation of a sphere S and

the other a plane π. Hence S = 0 and π = 0 given together represent a circle.
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Note 2.7.4. Let S = x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 and

π = ax+ by + cz + d = 0. Then S+λπ = 0 (where λ is a constant) represents the

equation of a sphere passing through the circle given by S = 0 and π = 0. For,

s+ λπ = 0 represents a sphere. Further S = λπ = 0 is satisfied by the points common

to S=0 and π = 0.

Note 2.7.5. Two intersecting sphere also determine a circle. For, if S = 0 and

S1 = 0 represent two spheres then S − S1 = 0 is a first degree equation in x, y, z and

hence represents a plane.

Hence ’S = 0 and S − S1 = 0’ or ’S1 = 0 and S − S1 = 0’ determine a circle.

Solved Problems

Problem 2.7.6. Find the equation of the sphere with centre (1,−1, 2) and radius 3.

Solution. The required equation is (x− 1)2 + (y − 1)2 + (z − 1)2 = 32

That is, x2 + y2 + z2 − 2x+ 2y − 4z − 3 = 0.

Problem 2.7.7. Obtain the equation of the sphere having its centre at the point

(6,−1, 2) and touching the plane 2x− y + 2z = 0.

Solution. Since the plane touches the sphere, the radius r is the perpendicular

distance from the centre (6,−1, 2) to the plane 2x− y + 2z − 2 = 0.

Therefore r=±
[

2(6)−(−1)+2(2)−2√
[22+(−1)2+22]

]

=
[

12+1+4−2√
9

]

= 15
3

= 5

Therefore the equation of the sphere is (x− 6)2 + (y + 1)2 + (z − 2)2 = 52.

That is, x2 + y2 + z2 − 12x+ 2y − 4z + 16 = 0.

Problem 2.7.8. Find the equation of the sphere passing through the points (0, 0, 0),

(1, 0, 0) (0, 1, 0) and (0, 0, 1).

Solution. Let the equation of the sphere be

x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0

It passes through the origin and so d = 0.

The point (1, 0, 0) lies on the sphere and so 1 + 2u+ d = 0 and hence u = −1/2.
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The point (0, 1, 0) lies on the sphere and so 1 + 2v + d = 0 and hence v = −1/2.

The point (0, 0, 1) lies on the sphere and so 1 + 2w + d = 0 and hence w = −1/2.

Therefore the equation of the sphere is x2 + y2 + z2 − x− y − z = 0.

Problem 2.7.9. Find the equation of the sphere passing through the points (1, 1, 2),

(−1, 1, 2) and having the centre of the sphere on the line

x+ y − z − 1 = 0 = 2x− y + z − 2.

Solution. Let the equation of the sphere be

x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0

It passes through the points (1, 1,−2) and (−1, 1, 2).

Therefore 1 + 1 + 4 + 2u+ 2v − 4w + d = 0

Therefore 2u+ 2v − 4w + d = −6 · · · (1)

Similarly, −2u+ 2v + 4w + d = −6 · · · (2)

The centre (−u,−v,−w) lies on the line determined by the two planes

x+ y − z − 1 = 0 and 2x− y + z − 2 = 0.

Therefore −u− v + w = 1 · · · (3)

−2u+ v − w = 2 · · · (4)

(1)-(2) =⇒ 4u− 8w = 0 · · · (5)

From (5), we get u = 2w.

Therefore (3) and (4) become −w − v = 1. · · · (6)

−5w + v = 2 · · · (7)

From (6) and (7), we get w = −1/2 and v = −1/2.

From (3), we get u = −1 and from (1), we get d = −5.

Therefore the equation of the sphere becomes x2 + y2 + z2 − 2x− y − z − 5 = 0.

Problem 2.7.10. Find the equation of the sphere passing through the circle

x2 + y2 + z2 − 4 = 0, 2x+ 4y+ 6z− 1 = 0 having its centre on the plane x+ y+ z = 6.

Solution. The equation of the sphere passing through the circle determined by the

sphere and the plane is given by

x2 + y2 + z2 − 4 + λ(2x+ 4y + 6z − 1) = 0

That is, x2 + y2 + z2 − 4 + 2λx+ 4λy + 6λz − 4 − λ = 0 · · · (1)
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Its centre is (λ,−2λ,−3λ).

This centre lies on the plane x+ y + z = 6.

Therefore λ− 2λ− 3λ = 6. Hence −6λ = 6. Hence λ = −1

Equation of the required sphere is got from (1) as

x2 + y2 + z2 − 4 − 2x− 4y − 6z − 3 = 0

Problem 2.7.11. Show that the sphere s=x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0

will cut the spheres S1 = x2 + y2 + z2 + 2u1x+ 2v1y + 2w1z + d1 = 0 in a great circle

if 2uu1 + 2vv1 + 2ww1 − (d+ d1) = 2r2
1 where 2r2

1 where r1 is the radius of the later

sphere.

Solution. The plane π determined by S = 0 and S1 = 0 is S − S1 = 0 and it is

π : 2(u− u1)x+ 2(v − v1)y + 2(w − w1)z + d− d1 = 0.

The intersection of the spheres S = 0and S1 = 0 will be a great circle if the centre

(−u1,−v1,−w1) of S1 = 0 lies on the plane π = 0.

∴ 2(u− u1)u1 + 2(v − v1)v1 + 2(w − w1)w1 + d− d1 = 0.

∴ 2uu1 + 2vv1 + 2ww1 + d− d1 − 2u2
1 − 2v2

1 − 2w2
1 = 0.

∴ 2uu1 + 2vv1 + 2ww1 = 2(u2
1 + v2

1 + w2
1) + d− d1

=2(r2
1 + d1) + d− d1 (since r2

1 = u2
1 + v2

1 + w2
1 − d1)

=2r2
1 + d+ d1

∴ 2uu1 + 2vv1 + 2ww1 − (d+ d1) = 2r2
1

Problem 2.7.12. Prove that the two spheres

S1 = x2 + y2 + z2 − 2x+ 4y − 4z = 0;S2 = x2 + y2 + z2 + 10x+ 2z + 10 = 0

touch each other and find the point of contact.

Solution. The centre of S1 = 0 is C1(1,−2, 2) and radius is

r1 =
√

(−1)2 + 22 + (−2)2 = 3

The centre of S2=0 is C2(−5, 0,−1) and radius is

r2 =
√

52 + 12 − 10 =
√

16 = 4

The distance between the centres, C1C2 =
√

36 + 4 + 9 = 7 = r1 + r2

Hence the two spheres touch each other externally.

The point of contact P is the point of division of the line joining C1 and C2 in the

ratios 3:4 internally.
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Hence P=
(

3(−5)+4(1)
3+4

, 3(0)+4(−2)
3+4

, 3(−1)+4(2)
3+4

)

=
(

−11
7
,−8

7
, 5

7

)

.

Problem 2.7.13. Find the equations of tangent planes of the sphere

x2 + y2 + z2 − 4x− 4y − 4z + 10 = 0 which are parallel to the plane x− z = 0.

Solution. Let (x1, y1, z1) be the point on the sphere at which the tangent plane is

drawn. The equation of the tangent plane at (x1, y1, z1) is

xx1 + yy1 + zz1 − 2(x+ x1) − 2(y + y1) − 2(z + z1) + 10 − 0

That is, (x1 − 2)x+ (y1 − 2)y + (z1 − 2)z − 2x1 − 2y1 − 2z1 + 10 = 0

That is, (x1 − 2)x+ (y1 − 2)y + (z1 − 2)z − 2x1 − 2y1 − 2z1 + 10 = 0 · · · (1)

This line parallel to x− z = 0.

∴
x1−2

1
= y1−2

0
= z1−2

−1
= k(say)

∴ x1 = k + 2, y1 = 2, z1 = −k + 2 · · · (2)

Since (x1, y1, z1) lies on the sphere, we have

(k + 2)2 + 22 + (−k + 2)2 − 4(k + 2) − 8 − 4(−k + 2) + 10 = 0.

∴ k2 + 4k + 4 + 4 + k2 − 4k + 4 − 4k − 8 − 8 + 4k − 8 + 10 = 0

∴ 2k2 − 2 = 0. Hence k = ±1.

Therefore from (2), the points are (3, 2, 1) and (1, 2, 3).

Therefore from(1), the equation of the tangent planes are x− z − 2 = 0 and

−x+ z − 2 = 0.

Problem 2.7.14. Prove that the two spheres x2 + y2 + z2 + 6y + 2z + 8 = 0 and

x2 + y2 + z2 + 6x+ 8y + 4z + 20 = 0 intersect each other orthogonally.

Solution. From the equation of the spheres, we have

u = 0, v = 3, w = 1, d = 8. u1 = 3, v1 = 4, w1 = 2, d1 = 20

Here 2uu1 + 2vv1 + 2ww1 − (d+ d1) = 0 + 24 + 4 − (8 + 20) = 0.

Hence the two spheres intersect orthogonally.

Problem 2.7.15. Find the equation of the spheres that passes through the two points

(0, 3, 0), (−2,−1,−4) and cuts orthogonally the two spheres

S : x2 + y2 + z2 + x− 3Z = 2 = 0, S1 : 2(x2 + y2 + z2) + x+ 3y + 4 = 0.

Solution. Let the equation of the sphere be
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x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0. · · · (1)

(0, 3, 0) lies on the sphere gives 6v + d = 0. · · · (2)

(−2,−1,−4) lies on the sphere gives −4u− 2v − 8w + d = −21. · · · (3)

The sphere S=0 is cut orthogonally by the sphere given by (1)

gives 2u(1/2) + 2v(0) + 2w(−3/2) = d− 2.

That is, u− 6w − d = −2 · · · (4)

The sphere S1 = 0 is cut orthogonally by the sphere given by (1) gives

2u(1/4) + 2v(3/4) + 2w(0) = d+ 4

That is, u+ 3v − 2d = 4 · · · (5)

solving (2), (3), (4), (5), we get u = 1, v = −1, w = 2 and d = −3.

Hence the equation of the sphere is

x2 + y2 + z2 + 2x− 2y − 4z − 3 = 0.

Problem 2.7.16. Find the condition for the plane lx+my + nz = p to be a tangent

plane to the sphere x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0.

Solution. The centre of the sphere S = 0 is (−u,−v,−w) and the radius is
√
u2 + v2 + w2 − d.

The plane lx+my + nz = pis a tangent to the sphere if the perpendicular

distance from the centre (−u,−v,−w) = radius.

∴
−lv−mv−nw−p√

l2+m2+n2
=

√
u2 + v2 + w2 − d

∴ (lu+mv + nw + p)2 = (l2 +m2 + n2)(u2 + v2 + w2 − d), which is the required

condition.

Problem 2.7.17. Show that the plane 2x− 2y + z + 12 = 0 touches the sphere

x2 + y2 + z2 − 2x− 4y + 2z − 3 = 0. Also find the point of contact.

Solution. The centre of the sphere is (1, 2,−1) and the radius is 3.(verify)

The perpendicular distace from (1, 2,−1) to the given plane

2x-2y+z+12=0 is 2−4−1+12√
[22+(−2)2+12]

= 9
3

= 3.

Thus, the perpendicular distance from the centre to the plane =radius of the sphere.

Therefore 2x− 2y + z + 12 = 0 is a tangent plane to the given sphere.

The direction ratios of the normal to the plane are 2,-2,1.
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Therefore the equation of the perpendicular from the centre to the plane is

x−2
2 = y−2

−2 = z+1
1 .

Any point on this line is given by P (2r + 1,−2r + 2, r − 1).

This point P is the point of contact if it lies on the plane 2x− 2y + z + 12 = 0.

Therefore 2(2r + 1) − 2(−2r + 2) + (r − 1) − 12 = 0.

Therefore 9r = −9 =⇒ r = −1.

Therefore the point of contact P is (−1, 4,−2).

Problem 2.7.18. Find the equation of the sphere through the circle

x2 + y2 + z2 + 2x+ 3y + 5z = 0; 2x+ 6y − 5z − 6 = 0 and passing through the centre

of the sphere S=x2 + y2 + z2 − 2x− 4y + 6z + 1 = 0.

Solution. The centre of the sphere S = 0 is (1, 2,−3).

The equation of the required sphere is of the form

x2 + y2 + z2 + 2x+ 3y + 5z + λ(2x+ 6y − 5z − 6) = 0 · · · (1)

It passes through (1, 2,−3).

Hence 1+4+9+2+6-15+λ(2+13-6)=0

∴ −7λ+ 7 = 0. Hence λ=1

Therefore, from(1), the equation of the sphere is

x2 + y2 + z2 + 4x+ 9y + 10z − 6 = 0.

Problem 2.7.19. Find the equation of the sphere through the circle

S ≡ x2 + y2 + z2 − 4 = 0 and S1 ≡ x2 + y2 + z2 + 4x− 2y + 4z − 10 = 0 and through

the point (2, 1, 1).

Solution. The plane π determined by S = 0 and S1 = 0 is

S − S1 ≡ −4x+ 2y − 4z + 6 = 0

∴ π = 2x− y + 2z − 3 = 0

Now the equation of the required sphere is

S + λπ = x2 + y2 + z2 − 4 + λ(2x− y + 2z − 3) = 0 · · · (1)

It passes through the point (2, 1, 1).

Hence 4+1+1-4+λ(4-1+2-3)=0.

∴ 2λ = −2. Hence λ = −1
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Therefore from(1) the equation of the sphere is

x2 + y2 + z2 − 2x+ y − 2z − 1 = 0.

Problem 2.7.20. The circle on the sphere x2 + y2 + z2 + 6y − 10z + 23 = 0 has

centre (1, 2,−2). Find its equation.

Solution. The centre of the sphere is C(0,−3, 5). The plane section of the sphere is

a circle whose centre is N(1, 2,−2).

Therefore NC is the normal to the intersecting plane. Hence d.r of NC are 1,5,-7.

Therefore the equation of the intersecting plane takes the form x+5y-7z+d=0.

It passes through (1, 2,−2).

Therefore 1+10+14+d=0. Hence d = −25.

Hence its equation is x+ 5y − 7z − 25 = 0.

Therefore the equation of the circle is given by

x2 + y2 + z2 + 6y − 10z + 23 = 0 = x+ 5y − 7z − 25.

Problem 2.7.21. Find the centre and radius of the circle determined by the spheres

S = x2 + y2 + z2 + 10y − 4z − 8 = 0.

Solution. The centre of the sphere is C(0,−5, 2) and radius

R=
√

02 + 52 + (−2)2 + 8 =
√

37

Let O be the centre of the circle of the determined by S=0 and π = 0.

Therefore CP is perpendicular to the plane x+ y + z − 3 = 0.

Therefore the direction ratios of CO are (1, 1, 2).

Hence the equation of CO are x
1

= y+5
1

= z−2
1

Any point CO is (r, r − 5, r + 2).

If this point lies on the plane x+ y + z − 3 = 0, we have r + (r− 5) + (r + 2)− 3 = 0.

Therefore 3r = 6. Hence r = 2. Hence O is (2,−3, 4).

Now CO2 = (0 − 2)2 + (−5 + 3)2 + (2 − 4)2 = 12

Radius of the circle =
√
R2 − CO2 =

√
37 − 12 =

√
25 = 5.

Problem 2.7.22. If r is the radius of the circle given by

S:x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0;π : lx+my + nz = 0, prove that

(r2 + d)(l2 +m2 + n2) = (mw − nv)2 + (nu− lw)2 + (lv −mu)2

65



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

Solution. The centre of the sphere S = 0 is C(−u,−v,−w) and radius

R =
√

(u2 + v2 + w2 − d)

Let A be the centre of the circle determined by S = 0 and π = 0.

Then CA is perpendicular to the plane π = 0.

The d.r of CA are the d.r of the normal to the plane π = 0 and they are l,m, n.

Therefore the equation of the line CA are
(x+u)

l
= (y+v)

m
= (z+w)

n
.

The point A is (kl − u, km− v, kn− w) for some k.

Since A lies on the plane π, l((kl − u) +m(km− v) + n(kn− w) = 0.

∴ k(l2 +m2 + n2) = lu+mv + nw.

Therefore k = lu+mv+nw
l2+m2+n2

Now,

r2 = R2 − AC2

= (u2 + v2 + w2 − d) − [(kl)2 + (km)2 + (kn)2]

= (u2 + v2 + w2 − d) − k2(l2 +m2 + n2)

= (u2 + v2 + w2 − d) − (lu+mv + nw)2

l2 +m2 + n2
(l2 +m2 + n2)

∴ r2(l2 +m2 + n2) = (u2 + v2 + w2 − d)(l2 +m2 + n2) − (lu+mv + nw)2

∴ (r2 + d2)(l2 +m2 + n2) = (l2 +m2 + n2)(u2 + v2 + w2) − (lu+mv + nw)2

= (mw − nv)2 + (nu− lw)2 + (lv −mu)2

Problem 2.7.23. Find the equations of the spheres which pass through the circle

x2 + y2 + z2 − 2x+ 2y + 4z − 3 = 0; 2x+ y + z − 4 = 0 and touch the plane

3x+ 4y − 14 = 0.

Solution. Let S=x2 + y2 + z2 − 2x+ 2y + 4z − 3 = 0;

π = 2x+ y + z − 4 = 0

Then S + λπ = 0 represents a sphere passing through the circle determined by S=0

and π = 0.

∴ S = λπ = x2 + y2 + z2 − 2x+ 2y + 4z − 3 + λ(2x+ y + z − 4) = 0.

That is, x2 + y2 + z2 − 2x(1 − λ) + y(2 + λ) + z(4 + λ) − (3 + 4λ) = 0 · · · (1)

Center is
(

1 − λ),−2+λ
2
,−4+λ

2

)

and

radius is
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=
√

(1 − λ)2 + (2+λ
2

)2 + (4+λ
2

)2 + (3 + 4λ)

Since the sphere touches the plane 3x+ 4y − 14 =, the perpendicular distance from

the centre of the sphere to this plane is equal to the radius of the sphere.

∴
3(1−λ)−2(2+λ)−14√

(32+42)
=

√

(1 − λ)2 + (2+λ
2

)2 + (4+λ
2

)2 + (3 + 4λ)

That is, −2(5λ+ 15) = 5
√

4(1 − λ)2 + (2 + λ)2 + (4 + λ)2 + 4(3 + 4λ)

∴ 100(λ+ 3)2 = 25[(4 + 4λ2 − 8λ) + (4 + λ2 + 4λ) + (16 + λ2 + 8λ) + (12 + 16λ)]

That is, 4(λ2 + 6λ+ 9) = 6λ2 + 20λ+ 36

That is, 2λ2 − 4λ = 0

Hence λ = 0 or λ = 2

Using these values of λ in (1), we get the equations of the spheres is

x2 + y2 + z2 − 2x+ y + z − 3 = 0 ; x2 + y2 + z2 + 2x+ 4y + 6z − 11 = 0.

Problem 2.7.24. Prove that the circles

x2 + y2 + z2 − 2x+ 3y + 4z − 5 = 0; 5y + 6z + 1 = 0 and

x2 + y2 + z2 − 3x− 4y + 5z − 6 = 0; x+ 2y − 7z = 0 lie on the same sphere and find

its equation.

Solution. The equation of any sphere through the first circle is

x2 + y2 + z2 − 2x+ 3y + 4z − 5 + λ(5y + 6z + 1) = 0

That is, x2 + y2 + z2 − 2x+ y(3 + 5λ) + 2z(2 + 3λ) − 5 + λ = 0 · · · (1)

The equation of any sphere through the second circle is

x2 + y2 + z2 − 3x− 4y + 5z − 6 + λ′(x+ 2y − 7z) = 0

That is, x2 + y2 + z2 − x(3 − λ′) − 2y(2 − λ′) + z(5 − 7λ′) − 6 = 0

Equations (1) and (2) will represent the same sphere if

3 − λ′ = 2;−2(2 − λ′) = 3 + 5λ; 5 − 7λ′ = 2(2 + 3λ);−6 = −5 + λ.

That is, λ′ = 1 and λ = −1 (from the first and last equations).

Also we observe that these values of λ and λ′ satisfy the other two equations also.

Hence the two circles lie on the same sphere and its equation is

x2 + y2 + z2 − 2x− 2y − 2z − 6 = 0

Problem 2.7.25. A sphere of constant radius r always passes through the origin and

meets the coordinate axes in A,B,C. Prove that the locus of the centroid of the

triangle ABC is the sphere 9(x2 + y2 + z2) = 4r2
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Solution. Let the equation of the sphere OABC be

x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 · · · (1)

since it passes through the origin d = 0.

Hence u2 + v2 + w2 = r2.

The sphere meets the x-axis at A.

To find x coordinate of A, we put y = z = 0 in (1) and we get x2 + 2ux = 0.

Hence x = −2u.

Hence A is (−2u, 0, 0). Similarly B is (0,−2v, 0) and C is (0, 0,−2w)

The centroid of the triangle ABC is
(−2u

3
, −2v

3
, −2w

3

)

= (x1, y1, z1) (say)

∴ x1 = −2u
3

; y1 = −2v
3

; z1 = −2w
3

.

Now, x2
1 + y2

1 + z2
1 = 4

9
(u2 + v2 + w2) = 4

9
r2

Therefore the locus of (x1, y1, z1) is 9(x2 + y2 + z2) = 4r2.

Problem 2.7.26. A moving plane intersects the coordinate axes in A,B,C. If the

plane always passes through a fixes point (a, b, c) prove that the locus of the centre of

the sphere OABC is a
x

+ b
y

+ c
z

= 2.

Solution. Let the sphere OABC be

x2 + y2 + z2 + 2ux+ 2vy + 2wz + d = 0 · · · (1)

Since it passes through O we get d = 0.

The centre of the sphere is (−u,−v,−w).

The sphere intersects the x-axis at A. To find x-coordinate of A we put y = z = 0 in

(1) and we get x2 + 2ux = 0. Hence x = −2u.

Therefore A is (−2u, 0, 0).

Similarly B is (0,−2v, 0) and C(0, 0,−2w).

The equation of the sphere ABC is x
−2u

+ y
−2v

+ z
−2w

= 1.

Since it passes through the fixed point (a, b, c), we have

a
−2u

+ b
−2v

+ c
−2w

= 1

Now, let (x0, y0, z0) be the centre of the sphere OABC whose locus we to find. Hence

(x0, y0, z0) = (−u,−v,−w).

∴ u = −x0, v = −y0 and w = −z0

Substituting in (2), we get a
2x0

+ b
2y0

+ c
2z0

= 1

Therefore the locus of (x0, y0, z0) is a
x

+ b
y

+ c
z

= 2
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Exercises 2.7.27. 1. Find the equation of the sphere whose centre is (1, 4, 2) and

radius 3 units.

2. Find the centre and radius of the sphere 2x2 + 2y2 + 2z2 − 2x+ 4y + 2z + 3 = 0

3. Find the equation of the sphere through the circle

x2 + y2 + z2 = 9; 2x+ 3y + 4z = 5 and the point (1, 2, 3)

4. Obtain the equation of the circle lying on the sphere

x2 + y2 + z2 − 2x+ 4y − 6z + 3 = 0 and having its centre at (2, 3,−4).
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Chapter 3

UNIT III

3.1 VECTOR DIFFERENTIATION

3.1.1 INTRODUCTION

Vector Calculus is an essential part of Mathematics background required for

study of Physics and Chemistry. There are two types of quantities which are defined

in Physics, one with direction and the other without direction. Some of the scalar

quantities are mass, length, time , volume etc. They are designated with some real

number with units. Quantities without direction are called scalars. The other kind

of quantity is vector. It has unit with direction. Some of these types of quantities

are displacement, velocity, momentum etc.

Scalar: A Physical Quantity which has magnitude only is called as a Scalar.

Ex: Every Real number is a scalar.

Vector: A Physical Quantity which has both magnitude and direction is called as

Vector.

Ex: Velocity, Acceleration.

Geometric description of vectors

We are used to describing the location of any point in the plane by choosing two

perpendicular ’coordinate axes’ (the x and y axes), and specifying the corresponding

(x, y)-coordinates of any given point. In the same way, we can describe where points

are in three dimensional space by choosing three mutually perpendicular axes, which
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we call the x, y, and z-axes. To say where some given point P is, we travel from the

origin to P, first along the x-axis, then parallel to the y-axis, and finally parallel to

the z-axis. The distances we had to go in the x, y, and z directions are the x, y, and z

coordinates of our point P.

We assume that the reader is familiar with the basic results in vector algebra. We

give a brief summary of these results in the next section. We denote vectors by bold

face Roman letters.

3.1.2 VECTOR ALGEBRA

Through out this chapter i, j, k stand for unit vectors along the coordinate

axes OX,OY,OZ respectively. If P (x, y, z) is any point, its position vector is given

by ~OP = xi + yj + zk.

The modulus of r is given by |r| = r =
√

x2 + y2 + z2.

Definition 3.1.1. Let a and b be two vectors. The scalar product or dot product of a

and b is defined to be a.b = ab cosθ where θ is the angle between the two vectors

when drawn from a common origin.

Note 3.1.2. (i) a · b = b · a (i.e) dot product is commutative.

(ii) a · a = |a|2 = a2

(iii) a · b = 0 if a and b are perpendicular vectors.

(iv) a · b = 0 ⇒ a = 0 or b = 0 or a and b are perpendicular vectors.

(v) a · (b+c) = a · b + a · c
(vi) i · i = j · j = k · k = 1

(vii) i · j = j · k = k · i = 0

(viii) If a = a1i + a2j + a3k and b = b1i + b2j + b3k then a · b = a1b1 + a2b2 + a3b3.

Definition 3.1.3. Let a,b be two non zero vectors. Then the vector product or

cross product of a and b is a vector perpendicular to both a and b with magnitude

ab sin θ where 0 ≤ θ ≤ π is the angle between a and b and whose direction is along a

unit vector n such that a,b,n form a right handled system.

Thus a× b=ab sin θ n.
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Note 3.1.4. (i) |a × b|=area of the parallelogram with a,b as adjacent sides.

(ii) a×b = -b×a (i.e) cross product is not commutate.

(iii) a×b = 0 if a and b are parallel.

(iv) a × (b+c) = a × b+a× c

(v) i × i = j × j = k × k = 0

(vi) i × j = k, j × k=i, k × i=j

(viii) If a=a1i + a2j + a3k and b=b1i + b2j + b3k

then a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

∣

∣

Definition 3.1.5. The scalar triple product or box product of three vectors

a,b,c is defined to be the scalar a.(b×c). It is sometimes denoted by [abc].

It can be easily verified that a.(b×c)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

∣

∣

Note 3.1.6. a.(b×c) represents the volume of the parallelopiped formed by the

coterminous edges a,b,c.

Note 3.1.7. [abc] = [bca] = [cab]

Note 3.1.8. [abc] = -[bac] =-[cba] = -[acb]

Note 3.1.9. The vectors a,b,c are coplanar if and only if [abc] = 0.

Result 3.1.10. 1.a× (b× c) = (a · c)b− (a · b)c

2.(a× b) × c = (a · c)b− (b · c)a

3.(a× b).(c× d)=

∣

∣

∣

∣

∣

∣

a.c a · d
b · c b · d

∣

∣

∣

∣

∣

∣

4.(a× b) × (c× d) = [abd]c− [abc]d.

3.1.3 DIFFERENTIATION OF VECTORS

Definition 3.1.11. Let r=r(t)=x(t)i + y(t)j + z(t)k be a vector valued function of a

scalar variable t.

72



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

r is said to be differentiable if

lim
∆t→0

=
r(t+ ∆t) − r(t)

∆t

exists and in this case we write

dr

dt
= lim

∆t→0

r(t+ ∆t) − r(t)

∆t

.

Theorem 3.1.12. Let r = r(t) = x(t)i + y(t)j + z(t)k be a differentiable function.

Then dr
dt

= x
′

(t)i + y
′

(t)j + z
′

(t)k.

Proof.
dr

dt
= lim

∆t→0

r(t+ ∆t) − r(t)

∆t

= lim
∆t→0

[

x(t+ ∆t) − x(t)

∆t

]

i +

[

y(t+ ∆t) − y(t)

∆t

]

j +

[

z(t+ ∆t) − z(t)

∆t

]

k

= x
′

(t)i + y
′

(t)j + z
′

(t)k 2

Theorem 3.1.13. If u(t)=x(t)i+y(t)j+z(t)k and v(t)=X(t)i+Y(t)j+Z(t)k then

d
dt

(u.v) = u.dv
dt

+ du
dt
.v.

Proof. u.v=x(t)X(t)+y(t)Y(t)+z(t)Z(t).

∴
d

dt
(u.v) = x(t)X ′(t) + x′(t)X(t) + y(t)Y ′(t) + y′(t)Y (t) + z(t)Z ′(t) + z′(t)Z(t).

= [x(t)X ′(t) + y(t)Y ′(t) + z(t)Z ′(t)] +

[x′(t)X(t) + y′(t)Y (t) + z′(t)Z(t)]

= u.
dv

dt
+
du

dt
.v

2

Theorem 3.1.14. d
dt

(u× v) = u× dv
dt

+ du
dt

× v
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Proof. u × v =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

x(t) y(t) z(t)

X(t) Y (t) Z(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= [y(t)Z(t) − Y (t)z(t)]i − [x(t)Z(t) −X(t)z(t)]j + x(t)Y (t) −X(t)y(t)]k

∴
d

dt
(u × v) = [(y(t)Z ′(t) + y′(t)Z(t) − (Y (t)z′(t) + Y ′(t)z(t))]i

− [(x(t)Z ′(t) + x′(t)Z(t) − (X(t)z′(t) +X ′(t)z(t))]j

+ [(x(t)Y ′(t) + x′(t)Y (t) − (X(t)y′(t) +X ′(t)y(t))]k

= [(y(t)Z ′(t) − y′(t)Z(t))]i− [(x(t)Z ′(t) −X ′(t)z(t))]j

+ [(x(t)Y ′(t) −X ′(t)y(t))]k + [(y′(t)Z(t) − y(t)Z ′(t))]i

− [(x′(t)Z(t) −X ′(t)z(t))]j + [(x′(t)Y (t) −X ′(t)y(t))]k

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

x(t) y(t) z(t)

X ′(t) Y ′(t) Z ′(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

x′(t) y′(t) z′(t)

X(t) Y (t) Z(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= u × dv

dt
+
du

dt
× v

2

Theorem 3.1.15. d(fu)
dt

= f du
dt

+ df
dt
u where f is a scalar values function f(t).

Proof is left as an exercise.

Theorem 3.1.16. d
dt
[fgh] =

[

fg dh
dt

]

+
[

f dg
dt
h
]

+
[

df
dt

gh
]

Proof.

d

dt
[fgh] =

d

dt
{f.(g × h)} =

df

dt
.(g × h) + f.

d

dt
(g × h)

=
df

dt
.(g × h) + f.

(

g × dh

dt
+
dg

dt
× h

)

=

[

df

dt
gh

]

+

[

f
dg

dt
h

]

+

[

fg
dh

dt

]

.

2
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3.1.4 Solved problems

Problem 3.1.17. If r= a cos ωt + bsin ωt where a,b are constant vectors and ω is

a constant, prove that r× dr
dt

= ω(a× b) and d2r
dt2

+ ω2r = 0.

Solution.

dr

dt
= −aω sinωt+ bω cosωt

d2r

dt2
= −aω2 cosωt− bω2 sinωt

d2r

dt2
= −ω2(a cosωt+ b sinωt)

∴
d2r
dt2

+ ω2r = 0

Now, r × dr

dt
= (a cosωt+ b sinωt) × (−aω sinωt+ bω cosωt)

= ωa × b cosω2t− ωb × a sin2 ωt

= ωa × b cosω2t+ ωa × b sin2 ωt

= ω(a × b).

Problem 3.1.18. If u(t) is a vector which is constant in magnitude prove that

du
dt

= 0 or du
dt

is perpendicular to u.

Solution. u.u = c (a constant) ⇒ du
dt
.u + u.du

dt
= 0. Hence u.du

dt
= 0

∴
du
dt

= 0 or du
dt

is perpendicular to u.

Exercises 3.1.19. 1. If r = aeωt + be−ωt show that d2r
dt2

− ω2r = 0 where a and b

are constant vectors.

2. Differentiate
(

r.dr
dt

)

with respect to t.

3. Expand d
dt

(

r
r

)

= 1
r

dr
dt
− 1

r2

dr
dt
r.
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3.2 GRADIENT

In differential calculus, we have introduced the operator d
dx

. When applied to a

differentiable function f(x) it yields another functioin df
dx

. In this section we introduce

another operator∇(to be read as del) given by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Definition 3.2.1. Let ϕ(x, y, z) be a real valued function having continuous first

order partial derivatives. We define ∇ϕ = i∂ϕ
∂x

+ j∂ϕ
∂y

+ k∂ϕ
∂z

=
∑

i∂ϕ
∂x

.

∇ϕ is called gradient of ϕ and is denoted by grad ϕ. Thus, the gradient of a

scalar function ϕ is a vector valued function.

Example 3.2.2. If ϕ(x, y, z) = xy2 + yz3 then

grad ϕ = ∇ϕ =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

(xy2 + yz3)

= y2i + (2xy + z3)j + 3yz2k

3.2.1 Geometrical interpretation

Let ϕ(x, y, z) be a scalar valued function having continuous partial derivatives.

Let P (x0, y0, z0) be any point. Let ϕ(x0, y0, z0) = c.

Then the equation ϕ(x, y, z) = c represents a surface. Obviously (x0, y0, z0)

lies on this surface. Along this surface dϕ = 0.

That is,
∂ϕ
∂x
dx+ ∂ϕ

∂y
dy + ∂ϕ

∂z
dz = 0

That is, ∇ϕ.dr = 0 where dr = idx+ jdy + kdz.

∴ ∇ϕ is perpendicular to dr as long as dr represents a change from P to Q where Q

remains on the surface ϕ(x, y, z) = c

∴ ∇ϕ is normal to all the tangents to the surface at P (x0, y0, z0).

Hence ∇ϕ represents the normal to the surface ϕ(x, y, z) = c.

Hence the unit normal to n to the surface ϕ(x, y, z) = c is given by n= ∇ϕ
|∇ϕ|
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Definition 3.2.3. Let a be a unit vector. The component of the vector ∇ϕ in the

direction a is given by a.∇ϕ and is called the directional derivative of ϕ in the

direction a. This can be interpretted as the rate of change of ϕ at (x, y, z) in the

direction a

Note 3.2.4. Let P = (x, y, z) and Q = (x+ ∆x, y+ ∆y, z + ∆z) be two neighbouring

points and ∆s be the distance between P and Q.

Then
dϕ

ds
=
∂ϕ

∂x

dx

ds
+
∂ϕ

∂y

dy

ds
+
∂ϕ

∂z

dz

ds
=
dr

ds
.∇ϕ

Since dr
ds

is a unit vector dr
ds
.∇ϕ is the directional derivative of ϕ in the direction of dr

ds
.

∴
dϕ
ds

= dr
ds
.∇ϕ has a maximum value when ∇ϕ and dr

ds
have the same directions.

Therefore the maximum value of the directional derivative takes place in the direction

of ∇ϕ and its magnitude is |∇ϕ|.

Equation of the tangent plane to the surface to ϕ(x, y, z) = c at a point

A(x0, y0, z0).

Let P (x, y, z) be any point on the tangent plane whose position vector is

r = xi + yj + zk.

A is the point of contact of the tangent plane with the surface whose position vector

is r0 = x0i + y0j + z0k.

Then r-r0 is a vector on the tangent plane. (∇ϕ) at (x0, y0, z0) is the normal to the

surface and hence perpendicular to the tangent plane.

At the point (x0, y0, z0), (r-r0).(∇ϕ) = 0 · · · (1)

Since it is true for all points r on the tangent plane, (1) represents the equation of the

tangent plane.

Equation of the normal line

Let r = xi + yj + zk be any point on the normal line at A(x0, y0, z0) whose position

vector is r = xi + yj + zk. Hence r-r0 lies along the normal line at A. Hence ∇ϕ at

(x0, y0, z0) is parallel to r− r0 so that at (x0, y0, z0), (r− r0)×∇ϕ = 0 · · · (2)

Since it is true for all points r on the normal line (2) represents the equation of

the normal.

Equation of the (i) tangent line (ii) normal plane at a given point
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A(x0, y0, z0) of the curve which is the intersection of the two surfaces ϕ(x, y, z) = c1

and ψ(x, y, z) = c2.

(i) Let C be the curve along which the two surfaces intersect.

Let A(x0, y0, z0) be a point on C whose position vector is r0 = x0i+ y0j + z0k. Let

r = xi + yj + zk be any point on the tangent line at A to the curve C.

∇ϕ at (x0, y0, z0) and ∇ψ at (x0, y0, z0) represent the normals to the surface ϕ = C1

and ψ = C2 respectively and both these are perpendicular to the tangent line at A.

Therefore r-r0 is parallel to (∇ϕ×∇ψ) at (x0, y0, z0) so that (x0, y0, z0),

r-r0 × (∇ϕ×∇ψ) represents the equation of the tangent line at A.

(ii) Also the equation of the normal plane at (x0, y0, z0) is given by at (x0, y0, z0),

(r-r0) · (∇ϕ×∇ψ) = 0.

Theorem 3.2.5. grad(ϕ± ψ) = gradϕ± gradψ

Proof.

grad(ϕ± ψ) = ∇(ϕ± ψ) =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

(ϕ± ψ)

=

(

i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z

)

±
(

i
∂ψ

∂x
+ j

∂ψ

∂y
+ k

∂ψ

∂z

)

= ∇ϕ±∇ψ.

= gradϕ± gradψ

2

Theorem 3.2.6. grad(ϕψ) = ϕgradψ + ψgradϕ

Proof.

grad(ϕψ) =
∑

i

(

∂

∂x
(ϕψ)

)

=
∑

i

(

ϕ
∂ψ

∂x
+ ψ

∂ϕ

∂x

)

=
∑

iϕ
∂ψ

∂x
+

∑

iψ
∂ϕ

∂x
= ϕ

(

∑

i
∂ψ

∂x

)

+ ψ

(

∑

i
∂ϕ

∂x

)

= ϕ(∇ψ) + ψ(∇ϕ) = ϕ gradψ + ψ gradϕ

2

Theorem 3.2.7. grad
(

ϕ
ψ

)

= (ψgrad ϕ− ϕgrad ψ)/ψ2
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Proof.

grad

(

ϕ

ψ

)

= ∇
(

ϕ

ψ

)

=
∑

i
∂

∂x

(

ϕ

ψ

)

=
∑

i

[

ψ ∂ϕ
∂x

− ϕ∂ψ
∂x

ψ2

]

=
1

ψ2

[

∑

iψ
∂ϕ

∂x
−

∑

iϕ
∂ψ

∂x

]

= (ψgradϕ− ϕgradψ)/ψ2

2

3.2.2 Solved problems

Problem 3.2.8. If r is the position vector of any point P (x, y, z), prove that

grad rn = nrn−2r.

Solution. Let r = xi + yj + zk. Then r2 = x2 + y2 + z2.

∴ 2r
(

∂r
∂x

)

= 2x. Hence ∂r
∂x

− x
r
. Similarly, ∂r

∂y
= y

r
and ∂r

∂z
= z

r

Now, gradrn = ∇rn = i
∂rn

∂x
+ j

∂rn

∂y
+ k

∂rn

∂z

= inrn−1 ∂r

∂x
+ jnrn−1 ∂r

∂y
+ knrn−1 ∂r

∂z

= nrn−1
[

i
x

r
+ j

y

r
+ k

z

r

]

= nrn−2(xi + yj + zk)

= nrn−2r

Problem 3.2.9. If ϕ(x, y) = log
√

x2 + y2 show that

grad ϕ =
r− (k.r)k

{r-(k.r)k}.{r-(k.r)k}
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Solution.

grad ϕ = ∇log
√

x2 + y2 =
1

2
∇log(x2 + y2)

=
1

2

(

i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z

)

log(x2 + y2)

=
1

2

[

i

(

2x

x2 + y2

)

+ j

(

2y

x2 + y2

)

+ k(0)

]

=
xi + yj

(xi + yj).(xi + yj)

=
r − zk

(r − zk).(r − zk)
(since r = xi + yj + zk)

=
r-(k.r)k

{r-(k.r)k}.{r-(k.r)k}
(since k.r = z)

Problem 3.2.10. Show that ϕ(a.r)=a for any constant vector a.

Solution. Let a = a1i + a2j + a3k

Therefore a.r = a1x+ a2y + a3z.

∇(a.r) =

(

i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z

)

(a1x+ a2y + a3z) = a1i + a2j + a3k = a

.

Problem 3.2.11. Obtain the directional derivative of ϕ = xy2 + yz3 at the point

(2,-1,1) in the direction of i + 2j + 2k.

Solution. ∇ϕ = y2i + (2xy + z3)j + 3yz2k

At (2,-1,1), we get ∇ϕ = i − 3j − 3k.

The unit vector of the given direction a is (i+2j+2k)/3.

Therefore the required directional derivative is a.∇ϕ = −11/3

Problem 3.2.12. Find the unit normal to the surface x3 − syz + z3 = 1 at (1,1,1).

Solution. Let ϕ = x3 − syz + z3 − 1.

Let n denote the unit normal to the surface.

Then n= ∇ϕ
|∇ϕ|

80



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

Now, ∇ϕ = (3x2 − yz)i − xzj + (3z2 − xy)k.

∴ ∇ϕ at (1,1,1) = 2i − j + 2k. Hence n=1
3
(2i − j + 2k)

Problem 3.2.13. If ∇ϕ = 2xyz3i + x2z3j + 3x2yz2k then find Φ(x, y, z)

if Φ(1,−2, 2) = 4

Solution. ∇ϕ =
(

i∂ϕ
∂x

+ j∂ϕ
∂y

+ k∂ϕ
∂z

)

= 2xyz3i + x2z3j + 3x2yz2k.

∴
∂Φ
∂x

= 2xyz3 · · · (1)

∂Φ
∂y

= x2z3 · · · (2)

∂Φ
∂z

= 3x2yz2 · · · (3)

Integrating (1),(2),(3) w.r.to x, y, z respectively we get,

Φ = yz3x2 + f(y, z); Φ = x2yz3 + g(x, z); Φ = x2yz3 + h(x, y)

∴ Φ = x2yz3 + k where k is a constant.

Given ϕ(1,−2, 2) = 4. Hence 4 = −16 + k. Hence k = 20.

∴ Φ(x, y, z) = x2yz3 + 20

Problem 3.2.14. Find the equation of the (i) tangent plane and (ii) normal line to

the surface xyz = 4 at the point (1,2,2).

Solution. Let ϕ = xyz − 4

∇ϕ = yzi + xzj + xyk

At (1,2,2) ∇ϕ = 4i + 2j + 2k.

The position vector of (1,2,2) is r0 = i + 2j + 2k.

(i) The equation of the tangent plane is given by (r-r0).∇ϕ = 0

∴ [(x− 1)i + (y − 2)j + (z − 2)k].(4i + 2j + 2k) = 0

∴ 4(x− 1) + 2(y − 2) + 2(z − 2) = 0

∴ 2x+ y + z = 6
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(ii) The equation of the normal line at (1, 2, 2) is given by (r-r0) ×∇ϕ = 0

∴

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

x− 1 y − 2 z − 2

4 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

[2(y − 2) − 2(z − 2)]i − [2(x− 1) − 4(z − 2)]j + [2(x− 1) − 4(y − 2)]k = 0

Equating the coefficients of i,j,k on both sides,

(y − 2) = (z − 2); (x− 1) = 2(z − 2); (x− 1) = 2(y − 2) which can be written in

symmetric form in rectangular cartesian coordinates as x−1
2

= y−2
1

= z−2
1

.

Problem 3.2.15. Find the angle between the surfaces x2 + y2 + z2 = 29 and

x2 + y2 + z2 + 4x− 6y − 8z − 47 = 0 at (4,-3,2).

Solution. Let ϕ(x, y, z) = x2 + y2 + z2 − 20 = 0 · · · (1)

ψ(x, y, z) = x2 + y2 + z2 + 4x− 6y − 8z − 47 · · · (2)

∇ϕ = 2xi + 2yj + 2zk;∇ϕ at (4,-3,2)=8i-6j+4k · · · (3)

∇ψ = (2x+ 4)i + (2y − 6)j + (2z − 8)k;∇ψ at (4.-3,2)=12i-12j-4k · · · (4)

We know that the angle between two surfaces is the angle between the tangent

planes at a common point and hence the angle between the normals at that point.

Equations (3) and (4) represent the normal to the surfaces (1) and (2) at

(4,-3,2) respectively

Let θ be the angle between the normals (3) and (4) at (4,-3,2)

∴ cos θ =
∇ϕ.∇ψ
|∇ϕ||∇ψ| =

96 + 72 − 16
√

82 + (−6)2 + 42
√

122 + (−12)2 + (−4)2

=
152√

116
√

304
=

19√
29
√

19
=

√

19/29

∴ θ = cos−1
√

19/29

Problem 3.2.16. Determine the constants a and b so that the surface

5x2 − 2yz − 9x = 0 will be orthogonal to the surface ax2y + bz2 = 4 at the point

(1,−1, 2).

82



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

Solution. Let ϕ(x, y, z) = 5x2 − 2yz − 9x and ψ(x, y, z) = ax2y + bz2 − 4

∴ ∇ϕ = (10x− 9)i − 2zj − 2yk and ∇ψ = 2axi + ax2j + 2bzk.

Therefore at (1,-1,2), ∇ϕ = i − 4j + 2k and ∇ψ = −2ai + aj + 4bk.

The two surfaces will be orthogonal at (1,-1,2) if the surface normals to the two

surfaces at (1,-1,2) are perpendicular.

Hence ∇ϕ.∇ψ = 0 at (1,−1, 2).

∴ (i − 4j + 2k).(−2ai + aj + 4bk) = 0

Therefore −2a− 4b+ 8b = 0. That is, 8b− 6a = 0 · · · (1)

Further (1,−1, 2) lies on both the surfaces,

Taking ψ(1,−1, 2) = 0, we have −a+ 4b = 4 · · · (2)

Solving (1) and (2), we get a = 2 and b = 3/2.

Exercises 3.2.17. 1. Find the grad Φ for the following at the points indicated.

(i) Φ(x, y, z) = zx− y2 at (a, b, c).

(ii) Φ(x, y, z) = xyz at (x1, y1, z1).

2. If Φ = x2z + ey/x and ψ = 2z2y − xy2 find ∇(Φ + ψ) and ∇(Φψ) at (1, 0, 2).

3. Find the unit normal to the surface xy3z2 = 4 at (−1,−1, 2).

4. Find the equation of the tangent plane at the origin to the surface

x2 + y2 + z2 + 8x− 6y + 4z = 0.

5. Find the angle between the surfaces x2 + y2 + z2 = 9 and z = x2 + y2 − 3 at the

point (2,−1, 2).

6. Find the directional derivative of ϕ = xy + yz + zx at the point (1, 2, 3) in the

direction of 3i + 4j + 5k.

7. Find the directional derivative of ϕ = 4 e2x−y+z at the point (1, 1,−1) in the

direction towards the point (−3, 5, 6).
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3.3 DIVERGENCE AND CURL

Definition 3.3.1. Let f = f1i + f2j + f3k be a vector valued function. The

divergence of f denoted by ∇.f or div f is defined by

∇.f =
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z
=

∑

i.
∂f

∂x

The curl of f denoted by ∇× f or curl f is defined by

curl f =
∑

i× ∂f

∂x
= i

(

∂f3

∂y
− ∂f2

∂z

)

+ j

(

∂f1

∂z
− ∂f3

∂x

)

− k

(

∂f2

∂x
− ∂f1

∂y

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

f1 f2 f3

∣

∣

∣

∣

∣

∣

∣

∣

∣

Note 3.3.2. The divergence of a vector valued function is a scalar valued function.

Note 3.3.3. The curl of a vector valued function is a vector valued function.

Note 3.3.4. If a = a1i + a2j + a3k the symbol a. ∇ stands for the operator

a1
∂
∂x

+ a2
∂
∂y

+ a3
∂
∂z

.

Examples 3.3.5. 1) Letr = xi + yj + zk.

divr = ∇.r = 1 + 1 + 1 = 3 and curl r = 0

2) Let f = xz3i − 2x2yzj + 2yz4k.

Then ∇.f = z3 − 2x2z + 8yz3 and ∇× f = (2z4 + 2x2y)i + 3xz2j − 4xyzk (verify)

Definition 3.3.6. A vector f is called solenoidal if div f = 0.

A vector f is called irrotational if curlf = 0

Theorem 3.3.7. div (f+g) = div f + div g.
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Proof. Let f = f1i + f2j + f3k and g = g1i + g2j + g3k

div(f+g) = ∇.f+g =
∂

∂x
(f1 + g1) +

∂

∂y
(f2 + g2) +

∂

∂z
(f3 + g3)

=

(

∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)

+

(

∂g1

∂x
+
∂g2

∂y
+
∂g3

∂z

)

= ∇.f + ∇.g = divf + divg

2

Theorem 3.3.8. Let f be a vector valued function and Φ a scalar valued function.

Then ∇.(Φf) = (∇Φ).f + (∇.f)Φ
That is, div(Φf) = (gradφ).f + (divf)φ.

Proof. Let f = f1i + f2j + f3k.

∇.(Φf) = ∇.(Φf1i + Φf2j + Φf3k)

=
∂

∂x
(Φf1) +

∂

∂y
(Φf2) +

∂

∂z
(Φf3)

=

(

Φ
∂f1

∂x
+ f1

∂Φ

∂x

)

+

(

Φ
∂f2

∂y
+ f2

∂Φ

∂y

)

+

(

Φ
∂f3

∂z
+ f3

∂Φ

∂z

)

=

(

∂Φ

∂x
i+

∂Φ

∂y
j +

∂Φ

∂z
k

)

.(f1i + f2j + f3k) +

(

∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)

Φ

= (∇Φ).f + (∇.f)Φ.

2

Theorem 3.3.9. ∇.(f× g) = g.(∇× f) − f.(∇× g)

That is, div(f× g) = g.curlf− f.curlg.

Proof.

div(f × g) = ∇.(f × g) =
∑

i.

(

∂

∂x
(f × g)

)

=
∑

i

(

∂f

∂x
× g + f × ∂g

∂x

)

=
∑

i

(

∂f

∂x
× g

)

+
∑

i

(

f × ∂g

∂x

)

=
∑

(

i × ∂f

∂x

)

.g −
∑

(

i × ∂g

∂x

)

.f

= (∇× f).g − (∇× g).f
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2

Theorem 3.3.10. div gradΦ = ∇.∇Φ = ∇2Φ where ∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2

Proof. ∇Φ = ∂Φ
∂x

i + ∂Φ
∂y

j + ∂Φ
∂z

k

∴ ∇.∇Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= ∇2Φ.

2

Note 3.3.11. The operator ∇2 is called the Laplacian operator. If Φ is a scalar

valued function, ∇2Φ is also a scalar valued function. If f = f1i + f2j + f3k, we define

∇2f = (∇2f1)i + (∇2f2)j + (∇2f3)k.

Theorem 3.3.12. curl(f + g) = curlf + curlg.

That is, ∇× (f+g) = ∇× g + ∇× g.

Proof.

∇× (f+g) =
∑

i × ∂

∂x
(f+g) =

∑

i × ∂f

∂x
+

∑

i × ∂g

∂x

= ∇× f + ∇× g

2

Theorem 3.3.13. curl (f× g) = (g.∇)f− (f.∇)g + f div g− g div f

Proof.

curl(f × g) = ∇× (f × g) =
∑

i × ∂

∂x
(f × g) =

∑

i ×
[

f × ∂g

∂x
+
∂g

∂x
× g

]

=
∑

i ×
(

f × ∂g

∂x

)

+
∑

i ×
(

∂f

∂x
× g

)

=
∑

[(

i.
∂g

∂x

)

f − (i.f)
∂g

∂x

]

+

∑

[

(i.g)
∂f

∂x
−

(

i.
∂f

∂x

)

g

]

= f

(

∑

i.
∂g

∂x

)

− g
∑

(

i.
∂g

∂x

)

+

∑

(i.g)
∂f

∂x
−

∑

(i.f)
∂g

∂x

= f div g − g div f + (g.∇) f − (f.∇) g
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2

Theorem 3.3.14. div curl f=∇.(∇× f) = 0

Proof. Let f = f1i + f2j + f3k

∴ ∇× f = i

(

∂f3

∂y
− ∂f2

∂z

)

− j

(

∂f1

∂z
− ∂f3

∂x

)

− k

(

∂f2

∂x
− ∂f1

∂y

)

∴ ∇.(∇× f) =
∂

∂x

(

∂f3

∂y
− ∂f2

∂z

)

+
∂

∂y

(

∂f1

∂z
− ∂f3

∂x

)

+
∂

∂z

(

∂f2

∂x
− ∂f1

∂y

)

=
∂2f3

∂x∂y
− ∂2f2

∂x∂z
− ∂2f3

∂y∂x
+
∂2f1

∂y∂z
+
∂2f2

∂z∂x
− ∂2f1

∂z∂y
= 0

2

Theorem 3.3.15. curl grad Φ = ∇× (∇Φ) = 0

Proof. ∇Φ = ∂Φ
∂x

i + ∂Φ
∂y

j + ∂Φ
∂z

k

∴ ∇× (∇Φ) = i

(

∂2Φ

∂y∂z
− ∂2Φ

∂z∂y

)

− j

(

∂2Φ

∂x∂z
− ∂2Φ

∂z∂x

)

+ k

(

∂2Φ

∂x∂y
− ∂2Φ

∂y∂x

)

= 0.

2

Theorem 3.3.16. grad(f.g) = f× curlg + g× curlf + (f.∇)g + (g.∇)f.

Proof.

grad(f.g) +
∑

i
∂

∂x
(f.g) =

∑

i

[

f.
∂g

∂x
+
∂f

∂x
.g

]

=
∑

f.

(

∂g

∂x

)

i +
∑

(

∂g

∂x
.g

)

i · · · (1)

Now, f ×
(

i × ∂g

∂x

)

=

(

f.
∂g

∂x

)

i − (f.i)
∂g

∂x
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(

f.∂g

∂x

)

i = f ×
(

i × ∂g

∂x

)

+ (f.i)∂g

∂x

∑

f.

(

∂g

∂x

)

i =
∑

f ×
(

i × ∂g

∂x

)

+
∑

(f.i)
∂g

∂x

= f ×
(

∑

i × ∂g

∂x

)

+

(

∑

f.i
∂g

∂x

)

= f ×
(

∑

i × ∂g

∂x

)

+

(

f.
∑

i
∂

∂x
g

)

= f × curlg + (f.∇)g · · · (2)

Similarly,
∑

(

∂g
∂x
.g

)

i = g × curl f + (g.∇) f · · · (3)

Substituting (2) and (3) in (1), we get the result. 2

Theorem 3.3.17. ∇× (Φf) = ∇Φ × f + Φ(∇× f)

Proof.

curl(Φf) = ∇× (Φf) =
∑

[

i × ∂

∂x
(Φf)

]

=
∑

[

i ×
(

∂Φ

∂x
f + Φ

∂f

∂x

)]

=

[

∑ ∂Φ

∂x
i

]

× f + Φ
∑

(

i × ∂f

∂x

)

= ∇Φ × f + Φ(∇× f)

2

Theorem 3.3.18. curl(curlf) = grad divf−∇2f

That is,∇× (∇× f) = ∇(∇.f) −∇2f
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Proof.

∴ ∇× f = i

(

∂f3

∂y
− ∂f2

∂z

)

− j

(

∂f1

∂z
− ∂f3

∂x

)

− k

(

∂f2

∂x
− ∂f1

∂y

)

∇× (∇× f) =
∑

{

∂

∂y

(

∂f2

∂x
− ∂f1

∂y

)

− ∂

∂z

(

∂f1

∂z
− ∂f3

∂x

)}

i

=
∑

{(

∂2f2

∂y∂x
+
∂2f3

∂z∂x

)

−
(

∂2f1

∂y2
+
∂2f1

∂z2

)}

i

=
∑

{

∂

∂x

(

∂f2

∂x
+
∂f1

∂y

)

−
(

∂2f1

∂y2
+
∂2f1

∂z2

)}

i

=
∑

{

∂

∂x

(

∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z

)

−
(

∂f 2
1

∂x2
+
∂f 2

1

∂y2
+
∂f 2

1

∂z2

)}

i

=
∑

{

∂

∂x
(∇.f) − (∇2f1)

}

i

=
∑

{

∂

∂x
(∇.f)i

}

−
∑

(∇2f1)i

= ∇(∇.f) −∇2f

2

Definition 3.3.19. A vector f is called a harmonic vector if ∇2f = 0.

Corollary 3.3.20. If f is a harmonic vector, then ∇× (∇× f) = ∇(∇.f)

Proof. ∇× (∇× f) = ∇(∇.f) −∇2f = ∇(∇.f) (since f is harmonic) 2

3.3.1 Solved problems

Problem 3.3.21. Find curl curl f at the point (1, 1, 1) if f = x2yi + xzj + 2yzk

Solution.

curl f = ∇× f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

x2y xz 2yz

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (2z − x)i + (z − x2)k

∴ curl curl f = ∇× (∇× f) = (2x+ 2)j.

∴ At (1, 1, 1), ∇× (∇× f) = 4j
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Problem 3.3.22. Prove that divr = 3 and curl r = 0 where r is the poistion vector

of a point (x, y, z) in space.

Solution. Let r = xi + yj + zk.

div r = ∇.r =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

.(xi + yj + zk)

=
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 1 + 1 + 1 = 3

curl r = ∇× r =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

× (xi + yj + zk)

= 0i + 0j + 0k = 0

Problem 3.3.23. Prove that div(rnr) = (n+ 3)rn. Deduce that rnr is solenoidal if

and only if n = −3.

Solution. rnr = rn(xi + yj + zk).

∴ div (rnr) =
∂

∂x
(xrn) +

∂

∂y
(yrn) +

∂

∂z
(zrn)

= rn + xnrn−1 ∂r

∂x
+ rn + ynrn−1 ∂r

∂y
+ rn + znrn−1 ∂r

∂z

= 3rn + nrn−2(x2 + y2 + z2) (since
∂r

∂x
=
x

r
etc)

= 3rn + nrn−2r2

= (3 + n)rn

Now, rnr is solenoidal if and only if div rnr = 0. That is, if and only if (3 + n)rn = 0

That is, if and only if n = −3.

Problem 3.3.24. Show that the vector

f = (y2 − z2 + 3yz − 2x)i + (3xz + 2xy)j + (3xy − 2xz + 2z)k is both irrotational and

solenoidal.

Solution. Let f = f1i + f2j + f3k where
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f1 = (y2 − z2 + 3yz − 2x); f2 = (3xz + 2xy); f3 = (3xy − 2xz + 2z)

∴ div f =
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z
= −2 + 2x− 2x+ 2 = 0

Also,curl f = 0 (verify). Hence f is irrotational.

Hence f is both irrotational and solenoidal.

Problem 3.3.25. If f is solenoidal, prove that curl curl curl curl f = ∇4 f

Solution.

curl curl curl curl f = ∇×∇×∇×∇× f

= ∇×∇× [∇(∇.f) −∇2f)]

= ∇×∇× (−∇2f) (since f is solenoidal ∇.f = 0)

= ∇×∇× g where g = −∇2f

= ∇(∇.g) −∇2g

= −∇2g [since ∇.g = ∇.(−∇2f) = ∇2(∇.f) = 0]

= −∇2(−∇2f)

= ∇4f.

Problem 3.3.26. If ϕ(x, y, z) is any solution of Laplace’s equation, prove that ∇ϕ is

both solenoidal and irrotational.

Solution. Since ϕ is a solution of Laplace equation, we have ∇2ϕ = 0 · · · (1)

Now, div(∇ϕ) = ∇.(∇ϕ) = ∇2ϕ =0 (by(1)). Hence ∇ϕ is solenoidal.

Now, curl(∇ϕ) = ∇× (∇ϕ) = 0 (verify)

∴ ∇ϕ is irrotational. Hence the result.

Problem 3.3.27. Prove that curl(r× a) = −2a where a is a constant vector.
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Solution.

curl(r × a) = ∇× (r × a) =
∑

[

i × ∂

∂x
(r × a)

]

=
∑

[

i ×
(

∂r

∂x
× a + r × ∂a

∂x

)]

=
∑

[

i ×
(

∂r

∂x
× a

)]

(since a is a constant vector)

=
∑

[i × (i × a)] (since
∂r

∂x
= i)

=
∑

[(i.a)i - (i.a)a] =
∑

[(i.a)i - a]

= [(i.a)i - a]+[(j.a)j - a]+[(k.a)k - a]

= (i.a)i+(j.a)j+(k.a)k - 3a = a - 3a

= -2a.

Exercises 3.3.28. 1. If ∇φ = (y + sin z)i + xj + xcoszk, find φ(x, y, z).

2. Show that div(r
r
) = 2

r
.

3. If f = x2zi− 2y3z2j + xy2zk find

(i) div f (ii) curl f at (1,−1, 1)

4. Find divergence and curl of the vector

(i) (xyz2, yzx2, zxy2) (ii) (x cos z, ylogx,−z2)

5. Show that Φ = ax2 + by2 + cz2 satisfies laplace’s equation if a+ b+ c = 0.

6. Prove that (f ×∇) × r = −2f where r=xi+yj+zk.

7. Prove that the vector (i) (3y4z2, 4x3z2,−3x2y2) is solenoidal.

(ii) (x2 − yz, y − zx, z2 − xy) is irrotational.

8. Let f be a vector valued function and φ be a scalar valued function. Prove that

div(φf) = (gradφ).f + (divf)φ.

9. If f = (ax+ 3y + 4z)i + (x− 3y + 3z)j + (3x+ 2y − z)k is solenoidal, find the

constant a.

10. Prove that div
(

a × grad1
r

)

= 0, where a is a constant vector.
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Chapter 4

UNIT IV

4.1 LINE AND SURFACE INTEGRALS

4.1.1 INTRODUCTION

In this chapter, introduce the concept of line and surface integrals leading to the

theorems of Green, Stokes and Gauss which express these integrals as a certain

double or triple as the case may be.

4.1.2 LINE INTEGRALS

Another way of generalising the Riemann integral
b
∫

a

f(x)dx is by replacing the

interval [a, b] by a curve in R3. In this generalisisation the integrand is vector valued

function f = f + 1i + f2j + f3k.

Definition 4.1.1. Let C be a curve in R3 described by a continuous vector valued

function r = r(t) = s(t)i + y(t)j + z(t)k where a ≤ t ≤ b.

Let f = f1(x, y, z)i + f2(x, y, z)j + f3(x, y, z)k be a continuous function defined

in some region which contains the curve C. The line integral of f over C denoted

by
∫

C

f.dr is defined by

∫

C

f.dr =
b
∫

a

[f1[x(t), y(t), z(t)]x
′(t) + f2[x(t), y(t), z(t)]y

′(t) + f3[x(t), y(t), z(t)]z
′(t)]dt

Work done by a force
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A force is said to do work when its point of application moves. When a

particle acted on by a force f, move from a point r to a neighbouring point r + ∆r,

the work done in this small displacement is defined to be the scalar product f.∆r. If

the particle describes an are C, then the work done is given by the line integral
∫

C

f.dr

4.1.3 Solved problems

Problem 4.1.2. Evaluate
∫

C

f.dr where f = (x2 + y2)i + (x2 − y2)j and C is the curve

y = x2 joining (0,0) and (1,1).

Solution. The parametric equation of the curve can be taken as x = t; y = t2 where

0 ≤ t ≤ 1.

∫

f.dr =

1
∫

0

[(t2 + t4)1 + (t2 − t4)2t]dt

=

[

1

3
t3 +

1

5
t5 +

1

2
t4 − 1

3
t6

]1

0

=
9

10

Problem 4.1.3. If f = x2i− xyj and C is the straight line joining the points (0,0)

and (1,1), find
∫

C

f.dr.

Solution. The equation of the given line is y = x and its parametric equaion can be

takes as x = t, y = t where 0 ≤ t ≤ 1.

∴
∫

C

f.dr =
1
∫

0

(t2 − t2) = 0

Problem 4.1.4. Evaluate
∫

f.dr where f = (x2 + y2)i− 2xyj and the curve C is the

rectangle in the x− y plane bounded by y = 0, y = b, x = 0, x = a.

Solution. Let O = (0, 0), A = (0, a), B = (a, b) and C = (0, b) be the vertices of the

given rectangle.

Hence
∫

C

f.dr =
∫

OA

f.dr +
∫

AB

f.dr +
∫

BC

f.dr +
∫

CO

f.dr

Now the parametric equation of OA can be taken as x = t, y = 0 where 0 ≤ t ≤ a.
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∴
∫

OA

f.dr =
∫ a

0
t2dt = 1

3
a3

∫

AB

f.dr =
b
∫

0

(−2at)dt (since x = a, y = t and 0 ≤ t ≤ b along AB)

=−ab2
∫

BC

f.dr = −
∫

CB

f.dr

=
a
∫

0

(t2 + b2)dt (since x = t, y = b and 0 ≤ t ≤ b along CB)

=−(1
3
a3 + ab2)

∫

CO

f.dr = −
∫

OC

f.dr

= −
∫ b

0
0 dt

= 0 (since x = 0, y = t and 0 ≤ t ≤ b along OC)

∴
∫

C

f.dr = 1
3
a3 − ab2 − (1

3
+ ab2) + 0

= −2ab2.

Problem 4.1.5. If f = (2y + 3)i + xzj + (yz − x)k, evaluate
∫

C

f.dr along the

following paths C.

(i) x = 2t2; y = t; z = t3 from t = 0 to 1.

(ii) The polygonal path P consisting of the three line segments AB,BC and CD

where A = (0, 0, 0), B = (0, 0, 1), C = (0, 1, 1) and D = (2, 1, 1).

(iii) The straight line joining (0, 0, 0) and (2, 1, 1).

Solution.

(i)

∫

C

f.dr =

1
∫

0

[(2t+ 3)4t+ 2t5 + (t4 − 2t2)3t2]dt

= [
8

3
t3 + 6t2 +

1

3
t6 +

3

7
t7 − 6

5
t5]10

=
8

3
+ 6 +

1

3
+

3

7
− 6

5
=

288

85
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(ii)

∫

P

f.dr =

∫

AB

f.dr +

∫

BC

f.dr +

∫

CD

f.dr

∫

AB

f.dr =

1
∫

0

0 dt = 0 (since x = 0; y = 0; z = t and 0 ≤ t ≤ 1 along AB)

∫

BC

f.dr =

1
∫

0

0 dt = 0 (since x = 0; y = t; z = 1 and 0 ≤ t ≤ 1 along BC)

∫

CD

f.dr =

2
∫

0

5 dt = 0 (since x = 1; y = 1; z = t and 0 ≤ t ≤ 2 along CD)

=
[

5t2
]2

0
= 10.

Hence
∫

P

f.dr = 10.

(iii) The parametric equation of the line joining (0, 0, 0) and (2, 1, 1) can be takes as

x = 2t, y = t, z = t where 0 ≤ t ≤ 1.

∴

∫

f.dr =

1
∫

0

[(2t+ 3)2 + 2t2 + (t2 − 2t)]dt

=

1
∫

0

(3t2 + 2t+ 6)dt = [t3 + t2 + 6t]10

= 8

Problem 4.1.6. Find the work done by the force F = 3xyi− 5zj + 10xk along the

curve C, x = t2, y = 2t2, z = t3 from t=1 to t=2.

Solution. F.dr = (3xyi − 5zj + 10xk).(dxi + dyj + dzk)
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= 3xydx− 5zdy + 10xdz

Total work done

∫

c

F.dr =

∫

C

3xydx− 5zdy + 10xdz

=

2
∫

1

3(t2 + 1)(2t2)2tdt− 5t3(4t)dt+ 10(t2 + 1)(3t2)dt

=

2
∫

1

[(12t5 + 12t3) − 20t4 + (30t4 + 30t2)]dt

=

2
∫

1

(12t5 + 10t4 + 12t3 + 30t2)dt

= [2t6 + 2t5 + 3t4 + 10t3]21

= 320 − 17 = 303

Exercises 4.1.7. 1. Evaluate
(4,2)
∫

(1,1)

f.dr where f = (x+ y)i + (y − x)j along

(i) the parabola y2 = x;

(ii) The straight line joining (1,1) and (4,2).

2. Evaluate
∫

f.dr where f = (2x− y + 4)i + (5y + 3x− 6)j where C is the

boundary of the △ABC in the x− y plane with vertices at A(0, 0), B(3, 0) and

C(3, 2) traversed in anticlockwise direction.

3. If f = (x2 − y2)i + 2xyj evaluate
∫

C
f.dr along the curve C in the x− y plane

given by y = x2 − x from the point (1, 0) to (2, 2).

4. If f = (3x− 2y)i + (y + 2z)j− x2k evaluate
∫

c

f.dr from (0, 0, 0) to (1, 1, 1) where

C is a path consisting of

(i) the curve x = t, y = t2, z = t3;

(ii) the straight line joining (0, 0, 0) to (1, 1, 1).

5. Find the total work done in moving a particle in a field of force

F = 2xyi − 3xj − 5zk along the curve x = t, y = t2 + 1 and z = 2t2 from t = 0

to 1.
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4.2 SURFACE INTEGRALS

Definition 4.2.1. Consider a surface S. Let n denote the unit outward normal to the

surface S. Let R be the projection of the surface S on the x− y plane. Let f be a

vector valued function defined in some region containing the surface S. Then the

surface integral of f over S is defined to be

∫∫

S

f.ndS =

∫∫

R

f.n

|n.k|dx dy

Note 4.2.2. We can also define surface integral by considering the projection of the

surface on the y − z plane or z − x plane.

4.2.1 Solved problems

Problem 4.2.3. Evaluate
∫∫

S

f.n dS where f = (x+ y2)i− 2xj + 2yzk and S is the

surface of the plane 2x+ y + 2z = 6 in the first octant.

Solution. Let ϕ(x, y, z) = 2x+ y + 2z − 6

The unit surface normal n =
∇ϕ
|∇ϕ

= 2i+j+2k
3

f.n =
1

3
[2(x+ y2) − 2x+ 4yz)]

=
1

3
[2(x+ y2) − 2x+ 2y(6 − 2x− y)]

=
4

3
[3y − xy]

Therefore f.n
|n.k|= 2(3y − xy)

The projection of the surface on the x− y plane is the region R bounded by

the axes and straight line 2x+ y = 6 as shown in figure.
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(0,6)

(3,0)O

R

Y

XX

y=6-2x
∴

∫∫

S

f.n dS =

∫∫

R

2(3y − xy)dxdy

= 2

3
∫

0

6−2x
∫

0

(3y − xy)dydx

= 2

3
∫

0

[
3

2
y2 − 1

2
xy2]6−2x

0 dx

= 2

3
∫

0

[
3

2
(6 − 2x)2 − 1

2
x(6 − 2x)2]dx

= [−18(32) − 34 + 8(33) +
1

2
(63)]

= 81

Problem 4.2.4. Evaluate
∫∫

S

(∇× f).n dS where f = y2i + yj− xzk and S is the

upper half of the sphere x2 + y2 + z2 = a2 and z ≥ 0.

Solution. Let ϕ(x, y, z) = x2 + y2 + z2 − a2

The unit surface normal n is given by

n =
∇ϕ
|∇ϕ| = 2xi+2yj+2zk

2
√

x2+y2+z2

=(1/a)(xi + yj + zk).

Also ∇× f = zi − 2yk

∴ (∇× f).n = (1/a)(yz − 2yz) = −(1/a)yz

Also, n.k=(1/a)z
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∴
(∇×f)
|n.f| = −y

The projection of the surface on the x− y plane is the circle x2 + y2 = a2. Let R

denote the interior of the circle.

∴
∫∫

S

(∇× f).ndS = −
∫∫

R

ydxdy

Put x = r cos θ and y = r sin θ. Hence |J | = r

∴
∫∫

(∇× f).ndS = −
2π
∫

0

a
∫

0

r sin θrdrdθ = −
2π
∫

0

1
3
a3 sin θdθ = 0

Problem 4.2.5. Evaluate
∫∫

f.n dS where f = (x3 − yz)i− 2x2yj + 2k and S is the

surface of the cube bounded by x = 0, y = 0, z = 0, x = a, y = a and z = a.

Y

X

Z

C

B

D

E

F

G
O

A

Solution. On the face OABC, n = −i and x = 0.

∴

∫∫

OABC

f.n dS =

a
∫

0

a
∫

0

yzdydz

=

a
∫

0

1

2
a2zdz

=
1

4
a4
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On the face DEFG, n = i and x = a

∴

∫∫

DEFG

f.n dS =

a
∫

0

a
∫

0

(a3 − yz) dy dz

=

a
∫

0

(a4 − 1

2
a2z) dz = (a5 − 1

4
a4)

On the face OGDC, n = −j, y = 0.

∴

∫∫

OGDC

f.n dS =

a
∫

0

a
∫

0

0dxdz = 0

On the face AFEB, n = j and y = a

∴

∫∫

AFEB

f.n dS =

a
∫

0

a
∫

0

−2x2adxdz =

a
∫

0

−2x2a2dx = −2

3
a5

On the face OAFG, n = −k, and z = 0

∴

∫∫

OAFG

f.n dS =

a
∫

0

a
∫

0

−2dxdy = −2a2

On the face CBED, n = k, and z = a

∴

∫∫

CBED

f.n dS =

a
∫

0

a
∫

0

−2dxdy = 2a2

∴

∫∫

S

f.n dS =
1

4
a4 + (a5 − 1

4
a4) + 0 − 2

3
a5 − 2a2 + 2a2 =

1

3
a5

Exercises 4.2.6. 1. Evaluate
∫∫

S

(x2 + y2) dS where S is the surface of the cone

z2 = 3(x2 + y2) bounded by z = 0 and z = 3.

2. Evaluate
∫∫

S

f.n dS where f = zi + xj − 3y2zk and S is the surface of the

cylinder x2 + y2 = 16 included in the first octant between z = 0 and z = 5
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3. If f = 4xzi − y2j + yzk, evaluate
∫∫

S

f.n dS; S is the surface of the cube

bounded by x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1.

4. Evaluate
∫∫

S

A.n dS where A = 18ai− 12j + 3yk and S is that part of the plane

2x+ 3y + 6z = 12 which is located in the first octant. That is,

x ≥ 0, y ≥ 0, z ≥ 0.

5. Compute
∫

S

f.dS, where f = x2yi + y2j + z2k over the cylindrical surface,

x2 + y2 = 4, 0 ≤ z ≤ 5 included in the first octant.

6. Compute
∫

S

f.dS, where f = yi + xj + zk over the cylindrical surface,

x2 + y2 = a2, 0 ≤ z ≤ h included in the first octant.

7. Compute
∫

S

f.dS, where f = yzi + zxj + xyk over the entire surface of a sphere

x2 + y2 + z2 = 4.

8. Compute
∫

S

f.dS, where f = yzi + zxj + xyk over the surface of a sphere

x2 + y2 + z2 = 1 which lies in the first octant.

9. Compute
∫

S

f.dS, where f = y2z2i + z2x2j + x2y2k over the surface of a sphere

x2 + y2 + z2 = 1 above the xy-plane and bounded by this plane.

10. Compute
∫

S

f.dS, where f = yzi + zxj + xyk over the entire surface of a sphere

x2 + y2 + z2 = 4.

11. Compute
∫

S

f.dS, where f = xi + yj + zk over the surface of triangular plane

with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).

4.3 volume integral

A triple integral of a function define over a region D in R3 is denoted by

∫∫∫

D

f(x, y, z) dx dy dz or
∫∫∫

D

f(x, y, z) dV or
∫∫∫

D

f(x, y, z) d(x, y, z).

The triple integral can be expressed as an iterated integral in several ways. For

example, if a region D in R3 is given by
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D={(x, y, z)|a ≤ x ≤ b;φ1(x) ≤ y ≤ φ2(x);ψ1(x, y) ≤ z ≤ ψ2(x, y)}

then
∫∫∫

D

f(x, y, z)dxdydz =
a
∫

b

φ2(x)
∫

φ1(x)

ψ2(x,y)
∫

ψ1(x,y)

f(x, y, z)dzdydx.

Note 4.3.1.
∫∫∫

D

dxdydz represents the volume of the region D.

Problem 4.3.2. Evaluate I =
log a
∫

0

x
∫

0

x+y
∫

0

ex+y+zdzdydx.

Solution.

I =

log a
∫

0

x
∫

0

[

ex+y+z
]x+y

0
dydx

=

log a
∫

0

x
∫

0

[

e2(x+y) − ex+y
]

dydx

=

log a
∫

0

[

e2(x+y)

2
− ex+y

]x

0

dx

=

log a
∫

0

[

e4x

2
− 3e2x

2
+ ex

]

dx

=

[

e4x

8
− 3e2x

4
+ ex

]log a

0

=

[

a4

8
− 3a2

4
+ a− 3

8

]

Problem 4.3.3. Evaluate
1
∫

0

3
∫

1

2
∫

1

xy2dzdydx
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Solution.

1
∫

0

3
∫

1

2
∫

1

xy2dzdydx =

2
∫

0

xdx

3
∫

1

y3dy

2
∫

1

zdz

=

[

x2

2

]2

0

[

y3

3

]3

1

[

z2

2

]2

1

= (2 − 0)

(

9 − 1

3

) (

2 − 1

2

)

= 26

Problem 4.3.4. Express the volume of the sphere x2 + y2 + z2 = a2 as a volume

integral and hence evaluate it.

Solution. Required volume =2× volume of the hemisphere above the xoy-plane.

Required volume = 2

a
∫

−a

√
a2−x2
∫

−
√
a2−x2

√
a2−x2−y2
∫

0

dzdydx

= 2

a
∫

−a

√
a2−x2
∫

−
√
a2−x2

√

a2 − x2 − y2dydx
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Taking a2 − x2 = b2, when integration with respect to y is performed.

V = 2

a
∫

−b

b
∫

−b

√

b2 − y2dydx

= 4

a
∫

−a

b
∫

0

√

b2 − y2dydx [since
√

b2 − y2 is an even function of y.]

= 4

a
∫

a

(

y

2

√

b2 − y2 +
b2

2
sin−1y

b

)b

0

dx

= π

a
∫

−a

(a2 − x2)dx

= 2π

(

a2x− x3

3

)a

0

=
4

3
πa3

Problem 4.3.5. Evaluate
∫∫∫

(x+ y + z) dxdydz where V is the region of space

inside the cylinder x2 + y2 = a2 that is bounded by the planes z = 0 and z = h.

Solution. The equation x2 + y2 = a2 (in three dimensions (that is in space))

represents the right circular cylinder whose axis is the z-axis and base circle is the

one with centre at the origin and radius equal to a.

I =

a
∫

−a

√
a2−x2
∫

−
√
a2−x2

h
∫

0

(x+ y + z)dzdydx

=

a
∫

−a

√
a2−x2
∫

−
√
a2−x2

[

(x+ y)h+
h2

2

]

dydx

= 2h

a
∫

−a

√
a2−x2
∫

0

(

x+
h

2

)

dydx
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[by using porperties of odd and even functions]

= 2h

a
∫

−a

(

x+
h

2

)√
a2 − x2dx

= 2h2

a
∫

0

√
a2 − x2dx

[since x
√
a2 − x2 is odd and

√
a2 − x2 is even]

= 2h2

(

x

2

√
a2 − x2 +

a2

2
sin−1x

a

)a

0

=
π

2
a2h2

Problem 4.3.6. Evaluate I =
∫∫∫

D

dxdydz
(x+y+z+1)3 where D is the region bounded by the

planes x = 0, y = 0, z = 0 and x+ y + z + 1 = 1.

Solution. The given region is a tetrahedron. The projection of the given

tetrahedron in x− y plane (z = 0) is the triangle bounded by the lines x = 0, y = 0

and x+ y = 1 as shown in the following figure.

D

(0,0)

(0,1)

(1,0)

x+y=1

in the given region x varies from 0 to 1. For each fixed x, y varies from 0 to 1− x. For
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each fixed (x, y), z varies from 0 to 1 − x− y.

∴ I =

∫∫∫

dz dy dx

(x+ y + z + 1)3

= −1

2

1
∫

0

∫ 1−x

0

[

(x+ y + z + 1)−2
]1−x−x
0

dy dx

= −1

2

1
∫

0

1−x
∫

0

[

1

4
− (x+ y + 1)−2

]

dy dx

= −1

2

1
∫

0

[y

4
+ (x+ y + 1)−1

]1−x

0
dx

= −1

2

1
∫

0

[

1 − x

4
+

1

2
− (x+ 1)−1

]

dx

= −1

2

[

x

4
− x2

8
+
x

2
− log(x+ 1)

]1

0

=
1

2
log 2 − 5

16

Problem 4.3.7. Evaluate I=
∫∫∫

D

xyz dx dy dz where D is the region bounded by the

poisitve octant of the sphere x2 + y2 + z2 = a2.

Solution. The projection of the given sphere x− y plane (z = 0) is the region

bounded by the circle x2 + y2 = a2 and lying in the first quadrant as shown in the

following figure.

D

(0,0)

(0,a)

(a,0)

In the given region x varies form 0 to a. For a fixed x, y varies from 0 to
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√
a2 − x2. For a fixed (x, y), z varies form 0 to

√

a2 − x2 − y2

∴ I =

a
∫

0

√
a2−x2
∫

0

√
a2−x2−y2
∫

0

xyz dz dy dx

=
1

2

a
∫

0

√
a2−x2
∫

0

xy (a2 − x2 − y2)dydx

=
1

8

a
∫

0

x (a2 − x2) dx [verify]

=
1

16

[

1

3
(a2 − x2)3

]a

0

=
a6

48

Exercises 4.3.8. 1. Evaluate
∫∫∫

D

(x2 + y2 + z2) dx dy dz where D is the region

bounded by the planes x+ y + z = a;x = 0; y = 0; and z = 0.

2. Evaluate
∫∫∫

d

x2yz dx dydz where D is the tetrahedron bounded by the planes

x
a

+ y
b
+ z

c
= 1; x = 0; y = 0; and z = 0.

3. Evaluate
∫∫∫

D

xyz (x2 + y2 + z2) dx dy dz where D is the positive octant of the

sphere x2 + y2 + z2 = a2.

4. Compute
∫

V

f.dV where f = 2xyi − xj + y2k and V is the region bounded by the

surfaces x = y = z = 0; and x = y = z = 1.

5. Compute
∫

V

f.dV where f = 2xyi − xj + y2k and V is the region bounded by the

surfaces x = 0, y = 0, y = 6, z = x2, and z = 4.

6. Compute
∫

V

f.dV where f = xi + yj + zk and V is the region bounded by

x = 0, y = 0, z = 0 and 2x+ 2y + z = 4.

7. Compute
∫

V

f.dV where f = 4zi − 2xj + 2xk and V is the region bounded by the

coordinate planes and the planes x = y = z = 1.
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Chapter 5

UNIT V

5.1 GAUSS, STOKE’S AND GREEN’S

THEOREMS

We state without proof the following theorems which connects line and surface

integrals with double or triple integrals.

Theorem 5.1.1. (Green’s Theorem in Plane)

If R is a closed region of the x-y plane bounded by a simple closed curve C and if M

and N are continuous functions of x and y having continuous partial derivatives in R

then
∫

C
M dx+N dy =

∫∫

R

(

∂N
∂x

− ∂M
∂y

)

dx dy

C is traversed in the anticlockwise direction.

Theorem 5.1.2. (Stoke’s Theorem)

If S is an open two sided surface bounded by a simple closed curve C and f is a vector

valued function having continuous first order partial derivatives then
∫

C
f . dr =

∫∫

S
(∇× f) n dS where C is traversed in the anticlockwise direction.

Theorem 5.1.3. (Gauss Divergence Theorem)

If V is the volume bounded by a closed surfaces S and f is a vector valued function

having continuous partial derivatives then
∫∫

S
f.n dS =

∫∫∫

V
∇.f dV
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Note 5.1.4. In cartesian form, the Gauss divergence theorem can be written as
∫∫

S
f1 dy dz + f2 dz dx+ f3 dx dy =

∫∫∫

V

(

∂f1

∂x
+ ∂f2

∂y
+ ∂f3

∂z

)

dx dy dz

Note 5.1.5. Green’s theorem in space is same as Gauss divergence theorem.

5.1.1 Solved problems

Problem 5.1.6. Verify Green’s theorem for the function

f = (x2 + y2)i− 2xyj and C is the rectangle in the xy-plane bounded by

y = 0, y = b, x = 0 and x = a.

Solution. Let f = (x2 + y2)i − 2xyj = M(x, y)i +N(x, y)j where M(x, y) = x2 + y2

and N(x, y) = −2xy.

∫

C

(Mdx+Ndy) =
∫

C

f.dr = −2ab2

Now, ∂N
∂x

− ∂M
∂y

= −(2y + 2y) = −4y

∴

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dxdy = −4

b
∫

0

a
∫

0

ydxdy = −4

b
∫

0

aydy

= −2ab2.

∴

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∫

C

(Mdx+Ndy)

Hence Green’s theorem is verified.

Problem 5.1.7. Verify Green’s theorem for the function

f = (x− y)i− x2j and C is the boundary of the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

Solution. Let f = (x− y)i − x2j = M(x, y)i +N(x, y)j where M(x, y) = x− y and

N(x, y) = −x2.

∫

C

(Mdx+Ndy) =
∫

C

f.dr

The boundary C is split into four smooth curves

C1(y = 0), C2(x = 2), C3(y = 2), C4(x = 0), which are traversed in anticlockwise

direction.
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(2,2)

(2,0)(0.0)

(0,2)

R C2

C1

C3

C4

X

Y

∫

C

(Mdx+Ndy) =
∫

C1

(Mdx+Ndy) +
∫

C2

(Mdx+Ndy)+
∫

C3

(Mdx+Ndy) +
∫

C4

(Mdx+Ndy).

On the curve C1, we have
∫

C1

(Mdx+Ndy) =
∫

C1

((x− y) dx− x2 dy)

=
2
∫

x=0

x dx = 2.

On the curve C2, we have
∫

C2

(Mdx+Ndy) =
∫

C2

((x− y) dx− x2 dy)

= −4
2
∫

y=0

dy = −8.

On the curve C3, we have
∫

C3

(Mdx+Ndy) =
∫

C3

((x− y) dx− x2 dy)

=
(
∫

x=0

x− 2) dx = 2.

On the curve C4, we have
∫

C4

(Mdx+Ndy) =
∫

C4

((x− y) dx− x2 dy) = 0

Hence
∫

C

(Mdx+Ndy) = 2 − 8 + 2 + 0 = −4
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Now, ∂N
∂x

− ∂M
∂y

= −2x− (−1) = −2x+ 1.

∴

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dxdy =

2
∫

0

2
∫

0

(1 − 2x) dx dy = −4

∴

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∫

C

(Mdx+Ndy)

Hence Green’s theorem is verified.

Problem 5.1.8. Verify Green’s theorem for
∫

C

(−y3dx+ x3dy) where C is the

boundary of the circular region x2 + y2 = 1.

Solution. To compute the given integral, we parameterize the circle as follows:

x = cos t, y = sint t, 0 ≤ t ≤ 2π

XX’

Y

Y’

O

R

C

Therefore
∫

C

(−y3dx+ x3dy) =
2π
∫

0

(sin4 t+ cos4 t)dt

=
2π
∫

0

(

3
4

+ cos 4t
)

dt

=
[

3
4
t+ 1

4
sin 4t

]2π

0

= 3π
2 · · · (1)

It is given that M = −y3 and N = x3. Therefore

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

=

∫∫

R

3(x2 + y2)dx dy.
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= 3

1
∫

−1

√
1−x2
∫

−
√

1−x2

(x2 + y2)dy dx

= 6

1
∫

−1

√
1−x2
∫

0

(x2 + y2)dy dx

= 6

1
∫

−1

[

x2y +
1

3
y3

]

√
1−x2

0

dx

= 6

1
∫

−1

[

x2
√

1 − x2 +
1

3
(1 − x2)

3

2

]

dx

= 12

1
∫

0

[

x2
√

1 − x2 +
1

3
(1 − x2)

3

2

]

dx

Using the substitution x = sinθ, we get

= 12

π
2

∫

0

[

sin2θcos2θ +
1

3
cos4θ

]

dθ

= 12

π
2

∫

0

[

(1 − cos2θ)cos2θ +
1

3
cos4θ

]

dθ

= 12

π
2

∫

0

[

cos2θ − 2

3
cos4θ

]

dθ

= 12

π
2

∫

0

[

1

4
+

1

6
cos 2θ − 1

12
cos 4θ

]

dθ

= 3π
2 · · · (2)

From (1) and (2), Green’s theorem is verified.

Application of Green’s theorem to find area.

Let M = 0 and N = x. Then by Green’s theorem, we have
∫∫

R

dx dy =
∫

C

x dy. · · · (1)

The integral on the left is the area of the region R. Let it be denoted by A.
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Similarly, we assume that M = −y and N = 0. Again by Green’s theorem, we find

that
∫∫

R

dx dy = −
∫

C

y dx. · · · (2)

From (1) and (2), we get

2A =
∫∫

R

dx dy =
∫

C

x dy −
∫

C

y dx.

A = 1
2

(

∫

C

x dy −
∫

C

y dx

)

.

Problem 5.1.9. Find the area of the ellipse x2

a2 + y2

b2 = 1 using Green’s theorem.

Solution. From the above discussion, the area of the ellipse is given by

A = 1
2

∫

C

x dy −
∫

C

y dx,

where C is the ellipse x2

a2 + y2

b2 = 1.

Its parametric equations are x = a cos t, y = bsin t, 0 ≤ t ≤ 2π. Thus

A =
1

2





∫

C

x dy −
∫

C

y dx





=
1

2

2π
∫

0

ab(cos2t+ sin2t)dt

=
ab

2

2π
∫

0

dt

= πab

Problem 5.1.10. Using Green’s theorem, evaluate
∫

C
(xy − x2)dx+ d2ydy along the

closed curve C formed by y = 0, x = 1, and y = x

Solution. Green’s theorem is
∫

C

Mdx+Ndy =
∫∫

R

(

∂N
∂x

− ∂M
∂y

)

dx dy

Here M = xy − x2 and N = x2y

∴
∂M
∂y

= x and ∂N
∂x

= 2xy
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R

(1,1)

(1,0)(0,0) y=0

y=x
x=1

By Green’s theorem
∫

C

(xy − x2)dx+ x2ydy =
∫∫

R

(2xy − x)dxdy · · · (1)

where R is the region enclose by C (refer the above figure)

Now,

∫∫

R

(2xy − x)dxdy =

1
∫

0

∫ 1

y

(2xy − x)dxdy

=

1
∫

0

[

x2y − x2

2

]1

y

dy

=

1
∫

0

[(

y − 1

2

)

−
(

y3 − y2

2

)]

dy

=

[

y2

2
− y

2
− y4

4
+
y3

6

]1

0

=
1

2
− 1

2
− 1

4
+

1

6

= − 1

12

Hence from (1), we have
∫

C
(xy − x2)dx+ x2ydy = − 1

12
.

Problem 5.1.11. Using Green’s theorem, evaluate
∫

C
(x2ydx+ y3dy) where C is the

closed path formed by y = x and y = x3 from (0, 0) to (1, 1).

Solution. Green’s theorem is
∫

C

Mdx+Ndy =
∫∫

R

(

∂N
∂x

− ∂M
∂y

)

dxdy

Here M = x2y and N = y3

∴
∂N
∂x

= 0 and ∂M
∂y

= x2

By Green’s theorem
∫

C

(x2ydx+ y3dy) =
∫∫

R

(−x2)dxdy · · · (1)

where R is the region enclosed by C (refer the figure shown below) .
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y=x

(0,0)

C

y = x3
R

(1,1)

∫∫

R

(−x2)dxdy =

1
∫

0

y1/3

∫

0

x2dxdy

=

1
∫

0

[

x3

3

]y1/3

y

dy

= −1

3

1
∫

0

(y − y3)dy = − 1

12
(verify)

Hence from (1),
∫

C

(x2ydx+ y3dy) = − 1
12

Problem 5.1.12. Verify Stokes theorem for the vector function

f = y2i + yj− xzk and S is the upper half of the sphere x2 + y2 + z2 = a2 and z ≥ 0

Solution. We have already proved that
∫∫

S

(∇× f).n ds = 0 Now the boundary C

of the hemisphere is given by the equations x = a cos θ, y = a sin θ, z = 0, 0 ≤ θ ≤ 2π

∴

∫

C

f.dr =

∫

c

y2dx+ ydy − xzdz

=

2π
∫

0

[a2 sin2 θ(−a sin θ) + a sin θ(a cos θ)]dθ

= −a3

2π
∫

0

sin3 θdθ + a2

2π
∫

0

sin θ cos θdθ

= 0 (verify)

∴

∫

C

f.dr =

∫∫

S

(∇× f).ndS = 0
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Hence Stoke’s theorem is verified.

Problem 5.1.13. Verify Stoke’s theorem for f = (2x− y)i− yz2j− y2zk where S in

the upper half surface of the sphere x2 + y2 + z2 = 1 and C is its boundary.

Solution. Stokes’s theorem is
∫

C

f.dr =
∫∫

S

(∇× f).n dS

Here S is the hemisphere x2 + y2 + z2 = 1 and C is the circle x2 + y2 = 1, z = 0

We find

∫

C

f.dr =

∫

C

[(2x− y)i − yz2j − y2zk].(dxi + dyj + dzk)

=

∫

C

(2x− y)dx (since C lies on z = 0)

=

2π
∫

0

(2 cos θ − sin θ)(− sin θdθ)

(using parametric equation of the circle x2 + y2 = 1)

=

2π
∫

0

[− sin 2θ + sin2 θ]dθ

=

[

cos 2θ

2
+

1

2

(

θ − sin 2θ

2

)]2π

0

(

since sin2 θ =
1 − cos 2θ

2

)

=

[(

1

2
+ π

)

− (12)

]

= π

We evaluate
∫∫

S

curl f.n dS

curlf =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

2x− y −yz2 −y2z











= i(−2yz + 2yz) − j(0) + k(0 + 1) = k

The unit surface normal n = ∇ϕ
|∇ϕ| where

ϕ = x2 + y2 + z2 − 1 = xi + yj + zk

∴ curl f.n = k.(xi + yj + zk) = z
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The projection of S on xy plane is the circular disc R with centre origin and radius 1.

∴

∫∫

S

curlf.nds =

∫∫

R

zds =

∫∫

R

z
dxdy

|n.k|

=

∫∫

R

z

(

dxdy

z

)

=

∫∫

R

dxdy = Area of the unit circle.

= π

Hence Stoke’s theorem is verified.

Problem 5.1.14. Verify Stoke’s theorem for f = (x2 − y2)i + 2xyj in the rectangular

region x = 0, y = 0, x = a, y = b.

Solution. Stoke’s theorem is
∫

C

f.dr =
∫∫

S

(∇× f).ndS

Let O = (0, 0), A = (a, 0), B = (a, b), C = (0, b) be the vertices of the given rectangle.

∴

∫

C

f.dr =

∫

OA

f.dr +

∫

AB

f.dr +

∫

BC

f.dr +

∫

CO

f.dr

Therefore the parametric equation of OA can be taken as x = t, y = 0 where 0 ≤ t ≤ a

∴
∫

OA

f.dr =
∫ a

0
t2dt = a3

3

∫

AB

f.dr =

b
∫

0

2atdt (since x = a, y = t and 0 ≤ t ≤ b along AB)

= ab2

∫

BC

f.dr = −
∫

CB

f.dr = −
a

∫

0

(t2 − b2)dt (since x = t, y = b and 0 ≤ t ≤ a along CB)

= −a
3

3
+ ab2

∫

CO

f.dr = −
∫

OC

f.dr = −
b

∫

0

0 dt

(since x = 0, y = t and 0 ≤ t ≤ a along OC)

= 0
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Thus

∫

C

f.dr =
a3

3
+ ab2 − a3

3
+ ab2 = 2ab2 · · · (1)

Now, curl f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

x2 − y2 2xy 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= i(0) − j(0) + k(2y + 2y) = 4yk

∴

∫∫

S

curl f.n dS =

∫∫

R

curl f.n

|n.k| dx dy

Here the surface S denotes the rectangle and unit outward normal n is k.

S

C
(0,b) B

(a,b)

(a,0)
A(0,0)O

y=b

y=0

∴

∫∫

S

curl f.n dS =

b
∫

0

a
∫

0

4y dx dy

=

b
∫

0

[4xy]a0 dy

= 4a

b
∫

0

y dy

That is,
∫∫

S

curl f .n dS = 2ab2 · · · (2)

Thus, from (1) and (2), Stoke’s theorem is verified.

Problem 5.1.15. Evaluate by using Stoke’s theorem
∫

C

(yzdx+ zxdy + xydz) where C is the curve x2 + y2 = 1, z = y2.

Solution. We note that

yzdx+ zxdy + xydz = (yzi + zxj + xyk).(idx+ jdy + kdz)
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=f.dr where f = yzi + zxj + xyk and dr = idx+ jdy + kdz

∴
∫

C

(yzdx+ zxdy + xydz) =
∫

C

f.dr =
∫∫

S

(∇× f).ndS

But ∇× f = 0 (verify)

∴
∫

C

(yzdx+ zxdy + xydz) = 0

Problem 5.1.16. Evaluate
∫

C

(exdx+ 2ydy − dz) by using Stoke’s theorem where C is

the curve x2 + y2 = 4, z = 2.

Solution.
∫

C

(exdx+ 2ydy − dz) =
∫

C

f.dr where f=exi + 2yj − k and

dr = dxi + dyj + dzk.

=
∫∫

S

(∇× f).n dS (by Stoke’s theorem)

where S is any surface whose boundary is given by x2 + y2 = 4 and z = 2.

Now, ∇× f=0 (verify)

∴

∫∫

S

(∇× f).n dS = 0

∴

∫

C

(exdx+ 2ydy − dz) = 0

Problem 5.1.17. Using Stoke’s theorem, compute
∫

C

f.dr, where

f = (z2 − y2 + zx− xy)i + (x2 − z2 + xy− yz)j + (y2 − x2 + yz − zx)k which is defined

in a region of space including a surface S whose boundary C is the triangle with

vertices (1, 0, 0), (0, 1, 0), (0, 0, 1).

Solution. By Stoke’s theorem,
∫

C

f.dr =
∫∫

S

(∇× f).ndS.

Given surface is φ = x+ y + z − 1 = 0.

i = ∇φ
|∇φ| = i+j+k√

3
.

curl f = 3(y + z)i + (x+ z)j + (x+ y)k. Therefore

∫

C

f.dr =

∫∫

S

(∇× f).ndS.

=

∫∫

Rxy

6(x+ y + z) dx dy
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= 6

∫∫

Rxy

dx dy

= 6

1
∫

0

1−x
∫

0

dy dx

= 6

1
∫

0

(1 − x) dx

= 3

Problem 5.1.18. Verify Gauss divergence theorem for the vector function

f = (x3 − yz)i− 2x2yj + 2k over the cube bounded by x = 0, y = 0, a = 0, x = a, y = a

and z = a.

Solution. ∴
∫∫

S

f.n dS = 1
3
a5 (refer problem 4.2.5 of section 4.2)

Now ∇.f=3x2 − 2x2 = x2

∫∫∫

V

∇.f dV =

a
∫

0

a
∫

0

a
∫

0

x2 dz dy dx =
1

3

a
∫

0

a
∫

0

dydz

=
1

3

a
∫

0

a4dz =
1

3
a5

∴

∫∫

S

f.n dS =

∫∫∫

V

∇.f dx dy dz

Hence Gauss divergence theorem is verified.

Problem 5.1.19. Verify Gauss divergence theorem for the vector function

f = yi + xj + z2k for the cylindrical region S given by x2 + y2 = a2; z = 0 and z = h;

Solution. ∇.f = 2z

∴

∫∫∫

V

∇.fdv =

h
∫

0

2π
∫

0

a
∫

0

2zrdrdθdz (changing into cylindrical coordinates)

=

h
∫

0

2π
∫

0

a2zdθdz =

h
∫

0

2a2πzdz = πa2h2
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The surface S of the cylinder consists of a base S1, the top S2 and the curved

portion S3.

On S1, z = 0, n = −k. Hence f.n = 0. Hence
∫∫

S1

f.n dS = 0

On S2, z = h, n = k. Hence
∫∫

S2

f.n dS =
∫∫

D

h2 dx dy (where D is the region

bounded by the circle x2 + y2 = a2) = πh2a2

On S3, n =
∇ϕ
|∇ϕ| where ϕ = x2 + y2 − a2

=
2xi+ 2yj

2
√

x2 + y2
=
xi+ yj

a

Now n.j =
y
a
.

∴
f.n

|n.j| = 2x

∴

∫∫

S3

f.ndS =

∫∫

R

2x dy dz = a2

b
∫

0

∫ 2π

0

2 cos θdθdz = 0

∴

∫∫

S

f.n dS =

∫∫

S1

f.n dS +

∫∫

S2

f.n dS +

∫∫

S3

f.n dS

= πh2a2

∴

∫∫∫

V

∇.f dv =

∫∫

S

f.n dS = πh2a2

Problem 5.1.20. Verify Gauss divergence theorem for

f = (x2 − yz)i+ (y2 − zx)j + (z2 − xy)k taken over the rectangular parallelopiped,

0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

Solution. We first evaluate
∫∫

S
f.n dS, where S is the surface of the rectangular

parallelepiped given by 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c.

It has the following six faces OABC (xz plane); OAFE (x− y plane);

OEDC(yz plane); DEFG(opposite to xz plane); AFGB(opposite to yz plane);

BCDG (opposite to xy plane).
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Z

C

D

O

Y
E

F

A

G

B

X

On the face OABC, we have y = 0, n = −j, 0 ≤ x ≤ a, 0 ≤ z ≤ c.

∴

∫∫

OABC

f.n dS =

a
∫

0

c
∫

0

[(x2 − 0z)i+ (0 − zx)j + (z2 − 0x)k].(−j) dz dx

=

a
∫

0

c
∫

0

zxdzdx

=

a
∫

0

x

[

z2

2

]c

0

dx

=
c2

2

[

z2

2

]a

0

=
a2c2

4

On the face DEFG we have y = b, n = j, 0 ≤ x ≤ a, 0 ≤ z ≤ c.

∴

∫∫

DEFG

f.ndS =

a
∫

0

c
∫

0

(b2 − zx)dzdx =

a
∫

0

[

b2z − z2x

2

]c

0

dx

=

a
∫

0

(

b2c− c2

2
x

)

dx =

[

b2cx− c2x2

4

]a

0

= ab2c− 1

4
c2a2

On the face OAFE, we have z = 0, n = −k, 0 ≤ x ≤ a, 0 ≤ y ≤ b.

∴

∫∫

OAFE

f.n dS =

a
∫

0

b
∫

0

xy dy dx =

a
∫

0

[

x
b2

2

]

dx =
a2b2

4

123



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

On the face BCDG, we have z = c, n = k, 0 ≤ x ≤ a, 0 ≤ y ≤ b

∴

∫∫

BCDG

f.n dS =

a
∫

0

b
∫

0

(c2 − xy)dy dx

=

a
∫

0

[

c2b− x
b2

2

]

dx = ac2b− a2b2

4

Similarly, we can prove that

∫∫

OEDC

f.n dS
b2c2

4
and

∫∫

ABGF

f.ndS = a2bc− b2c2

4

∴

∫∫

S

f.n dS =
a2c2

4
+

(

ab2c− 1

4
c2a2

)

+
a2b2

4
+

(

ac2b− a2b2

4

)

+
b2c2

4
+

(

a2bc− b2c2

4

)

= ab2c+ ac2b+ a2bc

= abc(a+ b+ c) · · · (1)

Now ∇.f= 2x+ 2y + 2z

∴

∫∫∫

V

(∇.f) dV =

a
∫

0

b
∫

0

c
∫

0

2(x+ y + z) dz dy dx = 2

a
∫

0

b
∫

0

(

xc+ yc+
c2

2

)

dy dx

= 2

∫ a

0

(

xbc+
b2c

2
+
c2b

2

)

dx = 2

[

a2bc+ b2ca+ c2ba

2

]

= abc(a+ b+ C) · · · (2)

Therefore from (1) and (2), we get
∫∫

S

f.n dS=
∫∫∫

V

(∇.f) dV

Hence Guass divergence theorem is verified.

Problem 5.1.21. Evaluate
∫∫

S

xydydz + y2dzdx+ yzdxdy where S is the surface

x2 + y2 + z2 = a2.

Solution. Comparing with the cartesian form of Gauss divergence theorem, we have

f1 = xy; f2 = y2; f3 = yz so that f = xyi + y2j + yzk.

∇.f = y + 2y + y = 4y.
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By Gauss divergence theorem
∫∫

S

(xy dy dz + y2 dz dx+ yz dx dy) =
∫∫∫

V

4ydxdydz

where V is the volume enclosed by the surface of the sphere

= 4

a
∫

−a

√
a2−x2
∫

−
√
a2−x2

√
a2−x2−z2
∫

−
√
a2−x2−z2

y dy dz dx

= 4

a
∫

−a

√
a2−x2
∫

−
√
a2−x2

0 dz dx (since y is an odd function)

= 0

Problem 5.1.22. Prove that for a closed surface S,
∫∫

S

r.n dS = 3V , where V is the

volume enclosed by S.

Solution. By Gauss’s divergence theorem
∫∫

r.ndS =
∫∫∫

V

∇.rdV

= 3

∫∫∫

V

dV (since ∇.r = 3)

= 3V where V is the volume enclosed by S.

Problem 5.1.23. Show that
∫∫

f.n dS =
∫∫∫

V

a2dV where r = ϕa and a = ∇ϕ and

∇2ϕ = 0.

Solution. By Gauss divergence theorem, we have

∫∫

S

f.ndS =

∫∫∫

V

∇.fdV · · · (1)

Now ∇.f = ∇.(ϕa)

= ϕ(∇.a) + (∇ϕ).a

= ϕ(∇.a) + a.a = ϕ(∇.∇ϕ) + a2

= ϕ(∇2ϕ) + a2 = a2(since ∇2ϕ = 0)

Therefore from (1), we get
∫∫

S

f.n dS =
∫∫∫

V

a2 dV.

125



Exercises 5.1.24. 1. Verify Green’s theorem in the plane for
∫

C

(x2 − y2) dx+ (y2 − 2xy) dy where C is the square with vertices

(0, 0), (2, 0), (2, 2) and (0, 2).

2. Verify Green’s theorem in the plane for
∫

C

(xy + y2) dx+ x2 dy where C is the

closed curve of the region bounder by y = x and y = x2.

3. verify Stoke’s theorem for f = 2yi+ 3xj − z2k where S is the upper half surface

of the sphere x2 + y2 + z2 = 9.

4. If f = xyi+ yzj + 3xk verify Stoke’s theorem for the region bounded by the

planes x = 0, y = 0, z = 0 and x+ y + z = 1

5. Verify Guass divergence theorem for the function f = 2xzi+ yzj + z2k over the

upper half of the sphere x2 + y2 + z2 = a2

6. If S is a closed surface enclosing a volume V and if f=xi+ 2yj + 3zk, prove that
∫∫

S
f.n dS = 6V

7. Evaluate
∫

C

f.dr where f = (2y + 3)r + xzj + (yz.x)k and the curve C is the

straight line joining (0, 0, 0) and (2, 1, 1).

8. Evaluate by using Stoke’s theorem
∫

C

(exdx+ 2ydy − dz) where C is the curve

x2 + y2 = 4, z = 2.

9. Evaluate
∫∫

f.ndS where f = (x3 − yz)i− 2x2yj + 2k and S is the surface of the

cube bounded by x = 0, y = 0, z = 0, x = a, y = a and z = a.

10. Verify Gauss Divergence theorem for f = yi + xj + z2k for the cylindrical region

S given by x2 + y2 = a2; z = 0 and z = h.
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